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Recent Developments in Second-Moment
Closure for Buoyancy-Affected Flows

by

T J Craft, N Z Inca and B E Launder
UMIST, Manchester, England

Abstrat

The paper summarizes a new type of second-moment closure, more elaborate in form than
earlier versions but designed to satisfy the two-component limit to which turbulence
reduces at a wall or at a sharp density interface. Because they are intrinsically realizable,
closures of this type are believed to offer the prospects of a wider range of applicability
than earlier schemes. They may also be expected to display better numerical stability.
Several ilustrative applications are provided including the downward directed warm jet, the
stratified mixing layer and buoyancy affected grid-turbulence decay. Extension of the
scheme to near wall flows appears possible without introducing empirical 'wall-reflection'
terms, at least in flows parallel to walls.

.1 Introduction

Second-moment closure is widely regarded as being the most productive level at which to
treat problems of turbulent flow if one seeks a model of wide applicability (with acceptable
computational costs). The principal reason is that the generation terms in the second-
moment equations appear in a form that requires no modelling. Nowhere is the truth of this
assertion more evident than In buoyancy-modified turbulence where, with a few simple
approximations applied to the unknown processes, predictions of complex phenomena can
be achieved with surprising accuracy, Launder (1989).

However this *basic" modelling of second-moment closure (hereinafter referred to as the
basic model) is known to h'.ve limitations, perhaps especially in free shear flows where flow
conditions depart far from local equilibrium. In recent years there has, however, been a
great deal of effort directed at improving second-moment closut s focusing in particular on
devising realizable models, Schumann (1977), Lumley (1978), iat is to say, models which,
by their construction, are unable to generate physically impossible - as opposed to merely
incorrect - results. Prime among the various Impossible results that are eliminated in a
realizable model are negative values of any normal stress.

While the principles of realizability and the associated two-component limit, Lumley (1978),
were known in the late 1970's, it was a decade before general modelling proposals were
put forward and, only now, is a reasonably full picture beginning to emerge of the
capabilities of these new approaches.

The focus of the present contribution is to review one of these new-generation approaches
to closure and to give examples of some of the buoyant flow predictions that have been
computed with it In addition, we illustrate how important the treatment of triple moments
are in certain stably stratified turbulent flows.

I



2 MLodellina Proposals

2.1 The Exact Equations

The exact second-moment equations for the turbulent stresses and scalar fluxes may be
written

D7IV Pi + Gq + d + OU-ry(1)

+ u--+ + -(2)
Dt

The symbols P, G.., PA, and G,, denote the generation terms due to shear, scalar gradient
and buoyancy which are given in detail in Tables 1 and 2. Since each comprises second-
moment and mean-field quantities, they may all be regarded as known or determinable
quantities. The buoyant contribution to the turbulent scalar flux contains 7, the mean
square scalar variance, and this, in turn, is determined from a dosed form of Its own
transport equation

S~(3)"-•" . Pee + de - 2• E

Again P. - -29u-, ae0ax, can be regarded as known.

The Reynolds stress and scalar fiux equations each contain three processes for which
models must be devised: the non-dispersive pressure interactions, 4j, and 0,,; the diffusion
terms, d# and d,,; and the dissipative terms e, and e.. For the last group it is convenient,
following Lumley (1978), to assume local isotropy (c. - 0; a,. 2/3 5, where e Is the
viscous dissipation rate of turbulent kinetic energy, k) absoAflng shortcomings of this
assumption into the modelling of •, and ý.. The diffusion terms can, as discussed later,
be of vital importance when stable stratification leads to a general decay of turbulence. In
many engineering and environmental flows, however, their Influence Is fairly weak and a
gradient diffusion approximation Is then both mathematically convenient and physically
adequate. The authors' group commonly adopts the Daly-Hadow (1970) proposal:

a ý k all}u
ai Cs-kU~~a1 -4

6 ax 1

=8 k_ oV"

while still simpler schemes, employing an isotropic diffusion coefficient are used by many
groups. Others adopt the so-called algebraicsecond-moment, ASM closures among whom
Rodi (1982) has made extensive explorations of buoyancy driven flows. These economical
approaches all work adequately when diffusion is of little importance in the overall second-
moment budget.

I



Generation Terms (exact):

4 = - O x O - { 3.k

Pressure-Strain Model:

O = OikjI + O.,2 + Oij3

where

00 =-cle (ai, + c' (aikja;k - %2i)

00 = -0.6 (P,, - '1/abijPk-k) + O.3caj3 (Pkklf)

~r~ [8(4 2uk+ , vUL -uk q~i, +u ka
-0. uI k

- C2 [A 2 (Pi3 - Di3 ) + 3am,ianj (P.m, - Dmn)]

+ 4 {(_ - L P - 11364APk.0

+ 0.IClc ai - 1/2 (aikak, -
1/36.3A2)] (Pkk/IC) - 0.O5a,3 alkPkI

01[~ Pmi + ~~m)2/36i P.1'

+0.1 1 V . - 1136ii UlUUmk 2  ] 6Di&; + .13k (-U 4_ . )

+ 0.21-uuku (Di&

(TO 8 ) (G'j -/ 61biGkk) +A4 ~aiiGkA!
-+ 80U. .

20 ' k k ,' 10 k

____ Um~ln UMt~k.

S k 20 k2

3~~i ER +- .

TO k~j + k-~ j L-2 d~U-0k~ i

Table 1 Exact generation terms and pressure-strain model in uj equations



2.2 Modelling Non-Dispersive Pressure Interactions.

The pressure terms are traditionally decomposed into turbulence-turbulence interactions
($1' €1), mean strain contributions (0•, 0 ) and buoyant effects (01, . The basic
model, alluded to in the Introduction, adopts Rotta's (1951) linear return-1o-isotropy model
for 0,1:

where a is the stress anisotropy tensor (ui- m - 1/3 &/k)Ik. Recent closures, however,

mainly adopt non-linear re, esentations in which the coefficients are functions of one or
both of the independent stress invariants, Lumley (1978). The form adopted in tha present
computations, Cresswell et al (1989), Craft and Launder (1989) is given in Table 1. Its
form was arrived at by reference to nor-buoyant flows and in particular satisfies the two-
component limit wherein 4., and ý.., vanish if 0. This is achieved by way of the
*flatness parameter" A - 1 - 918 (A2 - A.) where A2 - aj,.aji; A3 - al /ajk aid are the second
and third invariants of the anisotropy stress tensor. The quantity A has the Important
proprty that it always vanishes in two-component turbulence (Lumley, 1978). The specific
forms adopted for c1 end c are:

a1=(3.75Aý'4) + 10 0.7

The formulation for , given in Table 2, is analogous in form. Note the inclusion of the
scalar.dynamic time-scale ratio, R - c0%/41/2 and the final term in 0,, that involves the
mean scaar gradient, aG/ax,, a practice first introduced by Jorn.s & Musonge (1983) to
handle flows where the normalized generation rates of k and 6 were greatly different.
Although largely empirical, , and •,l have both been fixed by reference to non-buoyant
flows.

Mean strain influences on e4i and 0. are arrived at by first making the usual assumption
(Rotta, 1951) tat

axm (5)

m aLlt

The tensor a% is then expressed in ascending powers of the stress-anisotropy tensor. The
first approach of this type was made by Launder et al (1972) who retained only terms linear
in a More recent attempts have retained non-linear formulations and the additional free
coefficients that result are determined, mainly, by requiring that the pressure-strain process
should fall to zero if uq (say) should vanish, i.e.:

a1 2 . 0 if a22 = -2/3

For the corresponding term in the heat-flux equation, the recommended route (Craft &
Launder, 1989) is to require:

axj axe
in the two-component limit. This leads, with other constraints associated with

homogeneous turbulence, to the representation shown in Table 2.



Generation Terms (exact):

Pressure- Sc~ilar Gradient Model:

00u = 401i + 40 + 463

where

oil=-1.7 {1+ 1.2 (A2 A)1/2j110 R I/r i [ 1 (I + MO.62 - .aký0

+ 1.1aikakui .1] - 0.2A1/2RkaiiP-9 ,

492 0- 4 -i -02k -L+ /6 ~OPkk/f)

+ .1Uký4jkjm (O ~ + ý

-0u6(ai.mm& + 2amkPi.) Ik

+ O.15amjýý_L + gui) (amk77[I-. amu7*1ý)

O .05am ..I 7 amk aME- + +k UkOU U

Table 2: Exact generation terms and pressure-scalar flux model in up equations



In fact, the model for 0,, Is intimidatingly bulky and, in all the free-flow examples quoted,
it has been simplified by setting 4 to zero (with c2 - 0.6). However, very recently (Launder
& U, 1994) it has been discovered that retention of c4 (set equal to 0.6 with c2 reduced to
0.55) enables both free flows and flows near walls to be predicted satisfactorily without the
need for the "wall reflection" terms that are habitually employed in computing near-wall
flows. It is unlikely that this change would have had any significant effect in the prediction
of the free flow examples quoted hereunder which employed the original values for the two
empirical coefficients.

The buoyant terms in the pressure containing correlations are obtained in precisely the
same way as the mean-strain effects. The resultant formulations, obtained by Craft (1991)
as a fragment of his PhD study and first employed by Cresswell et al (1989), appear In
Tables 1 and 2. Note that the buoyant contribution to 0, is very long but, as with the much
shorter term in 0,,, it contains no empirically tunable coefficients. These models of the
'rapid' parts of the non-dispersive pressure fluctuations are far more complex than the
usually adopted basic-model formulations:

#2• + 0 #13 : -6 il+ -1
1-0.6 [Pi+GJ-l + 1J(PIA + Gk)

The comparisons will attempt to show that the greater complexity brings a considerably
greater width of applicability.

2.3 Determining the Dissipation Rates

The kinetic energy dissipation rate, s, remains as an unknown and is found from an
equation Identical in overall form to that of the Basic Model:

Da a C 0k- E2~ (6).Vk;57 + Vold I (Pkk + Gkk) L -

The difference from earlier forms, however, is that the coefficient c. is taken as a function
of the stress invariants and c,, takes a lower value than formerly:

.1.0 C 1.92
1+ 0.7A•/2 A25

where A2r. = max (A, 0.25)

The above change to c.2 goes a significant way to reducing the plane/round jet anomaly
and, moreover, to making predictions of weak turbulent shear flows far more sensitive to
initial conditions than hitherto - in line with experiment. The enforced reduction of c,, to
unity to accommodate that made to c,, brings the substantial side benefit of enabling the
effect of buoyant damping on the dissipation rate to be approximately arcommodated.
Examples will be provided later.

The scalar dissipation rate may also be obtained via a transport equation (see, for
example, Craft & Launder, 1989) and, in the long term, that is what we would expect to see
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employed. However, given the exploratory form of such model equations, in computine
buoyant flows, cur pre3ent experience is that one can do better by obtaining e. via s by
means of the a;gebraic :cm.nection

2 k

where the time-scale ratio R is related to the heat-flux oorrelationi coefficient by

R -3 (1 +A20) ; A2e = up / (k•) (7)

3 Some ApplicaW!ons of the Model to Buoyant Flows

The model presented in §2 was ,irst applied by Craft (1991) to consider homogeneous,
horizontal, stably stratified flow that had been created by passing a uniform flow past a
screen of differentially heated ho:izontal rods, Webster (1964), Young (1975). The
computations shown in Fig 1 have assumed local equilibrium (i.e. 1/2 (Pk+ Gkk) - s) which
is what has traditionally been adopted for this test ias (though it may have been some
way from the truth). Evidently, as the gradient Richardson number, R,, increases, the
shear-stress correlation coefficient decays, the turbulent Prandtl number incre&ies and the
horizontal heat-flux co.,relation decreases moderately. The non-linear model reproduces
these measured responses at least as accurately as the Basic Modell even though the
two empirical coefficients In the buoyant te,'ms of the latter model were optimized by
reference tu these data. The non-linear scheme, in contrast, has no adjustable coefficients
in the buoyant pressure-strain model.

We turn now to inhomogenaous cases of self-preserving free shear flows: the plane and
axisymmetric vertical, buoyantly-driven plumes. Their spreading behaviour, obtained by
Cresswell et al (1989), is summarized in Table 3; for comparison the oehaviour of the plane
and ,xisymmetrlc jets in stagnant surroundings Is also given. Comparisons are drawn both
with experiments and with predictions obtained with the Basic Model. What is evident is
that a far better overall agreement is achieved with the new invariant-dependent closure
than with the Basic Model. Even where discrepancies remain with experimental data, as
in the case of axisymmetric flows, these are both smaller in magnitude than with the Basic
Model and show a consistent behaviour across both the plumes and the jets.

Table 3" Rate of growth of half-width for some salf-preservlng freeshear flc•vs

Flow Basic Model Recommended New Model
experimental
values

Plane plume 0.078 0.120 0.118
RounJ plume 0.088 0.112 0.122

Plane ji 0.100 0.110 0.110
Round jet 0.105 0.093 0.101

1 An extensive riEview o,. tho capabilits of the Basic Model in buoyant Sow has been elven by Launder
(i •89),

___
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The same workers extended their study to the case of a hot jet dischawged verticaPy
downwards into a cold water environmont moving upwards at less than 2% of the Jet
velocity. The penetration ler'gh, of course, is crucially dependent on mixing. Figure 2a
is a vector vslocity plot in the v.cinity of discharge showing the reversal in the jet diectlon
while Fig 2b and 2c present raspectively the shear stress and resultant rtean, velocity
profiles. Evidently, the new model does significantly better in capturing the effe,"s of
buoyancy anid shear in this quite complex recilrulating flow. CreLswelP et al (1989) were,
moreover, agreeably ourprised to report that, bacause the new model respected
realizability, It led to a faster rate of numericalo convergence and to a eeduction of some
30% in oomputdrg time per run relative to the Basic Mo&d, despite the algebraic complexity
6- the model -ftelf.

A more recent application of the model, which focuses especially on the buoyant terms has
been reported by Van Haren 11992). Tho model is believed te be the same as that
presented in §2 save that c,1 and c€2 took the constant values 1.44 and 1.76 and u
transport equation ws•s solved for se. Van Haren considered the decay, in the abse,ice of
mean strain, of stably stratified turbulence and, in particular, the oscillatory pattern that is
known to bo established during the decay due to reversals in sign of the verwical heat flux.
Van Haren generated 2-point EDQNM results of such a flow and then tested how well
various simigie-point closures did In reproducing .•gb;ehaviour. Figure 3 compares the time
history of the normalized vertical heat flux I/(w2)1,2 verstis normalized timre where N is
the ari3nt-VilsAlii frequency. Quite clearly, the "extended" k-s model and a simple second-
moment closure' shown in the left-hand figure exhibit a significantly too long period and
a too rapid decay of the heat flux compared with the EDQNM data. In contrast the new
formula~don shown in Fig 3b is rather .ucoessful at mimicking the EDQNM results.

It is perhaps worth remarking that the present authors, In a short unpublished internal study
(Craft & Launder, 1990) had earlier looked at tLhe same problem (in this case, the focus
wae measurements by ltsweire at al, 1906) and repvoduced the oscillatory behavioLr of the
scalar flux but not the correct oscillatory period nor the amplitudi decay rate. Van Haren's
results may Indicate that we should simply have persevered longer or perhaps that the
different treatment of the dissipation rates in the two studies may have been responsible
for the difference. What should not be overloohed in considering the reason for
differences, however, is that, unequivocally, second-moment closure can reproduce an
cdllatory behaviour in the scalar flux which, probably, most workers would have said was
a signal of the collapse of turbulence into wave-like oscillationr - and thus outside the
scope of conventionel turbulence modelling.

A further application of the model to a free shear flow is the stably-stratified saline mixing
layer of Ultenbogaard (1.88). Tnls Is a test case that clearly brings out the superiority of
second-moment over eddy viscosity modelling. Fig 4 compares the authors' predictions
with the prfseart drisute with ihnse of the utandard k-e model. Evidently, because eddy
\iswtostty schemes are insufficiently sensitive to buoyant damping, mixing proceeds at far
too great a rute so tilat, by the final station, a nearly unifoam salinity level is predicted. The
secand-moment predictions are far better: both those with the proposed closure and those
generated by the Bas!c M(Ael that are omitted for clarity. However, it appears that, even
at second-moment level, rather too rapid mixing is takin6 place, us evidenced by the

2 No delalls were provided of this sdceme but It was presumably the 'basic' or tJe in this case) %Wry simiar
'qua•s-Itrop&' model frequently used by the group at the ECL

ii
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predicted mean salinity profile being rather too broad at the downstream station3 . It was
suspected that the problem arose from modelling diffusive transport in these strongly
stratified flows one may expect buoyant Influences on the transport processes to be
significant (see, for example, the work of Zeman & Lumley, 1979, on the stably stratified
atmospheric boundary layer). No such effects are incorported in the GGDH. In fact, the
diffusion of F turns out to be the most crucial process for 01 appears in the budget of the
vertical salinity flux, W6;, which, in turn, enters the buoyant term in the j. equation.
Accordingly, for illustration, we have just aimed at Improving the g2.,el of up'. For this
purpose we have essentially applied the same approximations to up as are made In the
Basic Model of the second moments. In addition, convective transport Is discarded while
the fourth-rank products are expressed In terms of the second by the Millionshtchlkov
(1941) hypothesis. The resultant model equation is

Tp - -~e } x 3 7P, -9 - (B)

where the coefficient c, takes the value 0.11.

Key aspects of the computations with this more com.nete model for up2 appear In Fig 5.
A somewhat smaller and less dispersed level of 6 Is predicted and this leads to a
substantially modified profile of 0 and to the somewhat steeper mean profile of salinity
concentration which accords better with th. measured data. This result suggests that a
more general and comprehensive treatment of second-moment transport processes in
highly stratified flow may be warranted, since the additional computational cost Is not
significant.

Attention is now turned to near-wall flows. Applications to date have been especially
concerned with mimicking the varying effects of shear and viscosity as the wall Is
approached. It has been found, Launder & U (1994), that when both c2 and cý In the
model of • are retained and appropriate low-Reynolds-number forms are introduced to
the dissipaton rate equations, It Is possible to predict complex shear flows up to the wall
itself without introducing wall-damping effects. Figure 6 shows, for example, predictions
of flow in a square sectioned duct. The well-known bulging of the contours towards the
corners Is due to the secondary flow which in turn, arises from the source of streamwise
vorticity associated with gradients of the Reynolds stresses lying In the cross-sectional
plane of the duct. The level of agreement achieved with the closure Is far better than that
with the Basic Model, despite the fact that that scheme employs wail-proximity corrections
to Olt

To date no applications of precisely the above model have been reported for force-field
-"-- flaow; U---s.... in an In~mclt axirtound.er andTscleepid-. (1-94DA
have applied an earti-r version of the model to flow In a two-dimensional channel rotating
in orthogonal mode. The modelling details are not reproduced here but, briefly, because
4 was taken as zero (with c2 - 0.6), it was necessary to incorporate a wall-reflection
correction, albeit one much weaker than for the Basic Model. The Corolis force that acts
on the Reynolds stress field in this case creates a flow similar to, If not identical with, that
of a horizontal, gravitationally modified heated channel flow: on the suction side of the duct

3The fact that the predicted profiles i". above the rnewaurenients is believed to be due to weak three
dlimenitonality in the experiment. Comparisons between mnomturement and predictions should thus Ignore this
displament
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turbulent transport is damped by the rotation while on the pressure side it is augmented,
at least for the moderate rotation rates con~Idered here. Comparisons are drawn in Fig 7
between the second-moment computations and the direct numerical simulations of
KrIstoffersen and Andersson (1990). Also included are predictions obtained by
Krlstoffersen et al (1990) using the earlier model of Launder and Shima (1989), essentially
a low-Reynolds-number version of the 13asic Model. We see that both models capture
quite well the strong asymmetry of the Reynolds stresses t'at arises from the rotation and
the associated strongly asymmetric mean velocity field. Overall, however, the new scheme
achieves decidedly the more complete agreement with the direct numerical simulation. In
contrast, any eddy visoggity model would show no effect of rotation for this flow since the
extra generation In the q component, normal to the wgJI, Is exactly balanced by an equal
and opposite source in the streasmwise normal stress (uj) and consequently there Is no net
augmentation of the generation rate of turbulence energy.

Finally, It is of interest to note that a group from the LNH 1of the EDF Research Laboratories
in Paris has begun to apply the new approach to tackle some of the physically very
complex problems of sediment transport, which are, of course, Intrinsically affected by
buoyant modifications to turbulent mixing (Laurence et el, 1993). While the results are only
preliminary In character they predict alterations in the viscous layer thickness due to the
sediment loading which seem to be broadly H'= line with experiments.

4 Concluding Remarks

The paper has reported results obtained with a new form of second-moment closure
designed to satisfy the two-component limit. Turbulence approaches this limit at a wall and
In other circumstances where turbulent fluctuations In one direction are strongly damped.
This strategy Is naturally appealing for the prediction of buoyancy-affected flows because
there a stabilizing gravitational field can, indeed, produce a quasi two-component
fluctuating velocity field.

At present the model requires more extensive testing and, doubtless, refinement. There
seems little doubt, however, that the main elements of the modelling set out in this paper,
including proposrJs for modelling second-moment transport, give closure schemes that
achieve a significantly wider range of applicability than those founded on the Basic Model.

Nomenclature

01i dimensionless anisotropic stress, (uu1 - 11n, 80 Z'Udlk

a', fourth rank tensor in mean-strain part of pressure-strain model

A Lumley's flatness parameter

A2 , A3 invariants of Reynolds stress

A42 heat flux Invariant

b011 third rank tensor In mean-strain part of pressure-scalar gradient model

ds coefficients in turbulence models

d diffusive transport (subscript denotes diffused quantity)

D diameter or distance between parallel planes

gi gravitational acceleration

GV buoyant generatbin rate of

*1



GU buoyant generation rate of uuj

G,, buoyant generation rate of up

k turbulent kinetic energy, TJ2

P4 shear-goneration rate of

P,, generation rate of up by mean gradients of U1 and e

P00  generation rate of 6

R1  gradient Richardson number

u1, U1 fluctuating and mean voiocity in direction x,

kinematic Reynolds stress

up kinematic scalar flux

u, U1 fluctuating and mean velocity In direction x,

w vertical velocity fluctuations

x, position coordinate

z vertical coordinate

OVj pressure-strain term of U-

0, pressure-scalar gradiont term of up

a# dissipation rate of

s~e dissipation rate of

se dissipation rate 1/2 02

r.m.s. scalar fluctuations

e mean scalar

P1  buoyancy parameter In direction x,
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Some similarity states of homogeneous
stably-stratified turbulence

By J. R. Chasnov

The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

The decay of statistically homogeneous velocity and density fluctuations in a stably-
stratified fluid is considered. Over decay times long compared to the turbulence timescale
but short compared to the period of internal gravity waves, three distinct high Reynolds
number similarity states may develop. These similarity states are a consequence of the
invariance of the low wavenumber coefficients of the three-dimensional kinetic or potential
energy spectrum; and their preferential development depends on the relative magnitudes
of the initial kinetic and potential energy per unit mass of the fluid. When the turbulence
has decayed over a time comparable to the period of the gravity waves, the three similarity
states mentioned above axe disrupted. Evidence will be presented of a new similarity state
which then develops asymptotically.

1. Introduction
The statistics of homogeneous turbulence in fluids of infinite extent typically depend

on time throughout their entire evolution. In homogeneous turbulence at high Reynolds
numbers, similarity states of the flow field may replace the statistically stationary states
that typically occur in bounded flows. In these similarity states the turbulence spectrum
decays without change of shape so that in an appropriately scaled coordinate system
the spectrum is independent of time. Some of the homogeneous flow fields for which
similarity states have been observed by large-eddy simulation include decaying isotropic
turbulence, passive scalars transported by isotropic turbulence with or without a uniform
mean gradient, and buoyancy-generated turbulence. The existence of a similarity state for
decaying homogeneous isotropic turbulence was postulated early on (Kolmogorov, 1941) as
was that for a transported homogeneous isotropic passive scalar field (Corrsin, 1951). More
recent work (Batchelor, Canuto & Chasnov, 1992; Chasnov, 1994) indicates that hitherto
unsuspected similarity states of homogeneous turbulence may exist for non-isotropic flows
which contain more complicating physics, such as flows with buoyancy forces and uniform
passive scalar gradients.

It is a natural extension of our earlier work in buoyancy-generated turbulence and tur-
bulence with uniform passive scalar gradients to consider whether high Reynolds number
similarity states exist for homogeneous turbulence in a stably-stratified fluid with both
buoyancy effects and active scalar (density) gradients. In this paper, we first show how
some of the flows previously considered can occur in a stably-stratified fluid at large Froude
numbers. We will also present some analytical arguments and numerical results which pro-
vide evidence for a new similarity state which develops at small Froude numbers.

I



2 J. R. Chasnov

2. Thle governing equations

Choosing our co-ordinate system such that the z-axis is pointed vertically upwards, we
assume a stable density distribution p = Po - fiz + p', where pc is a constant, uniform
reference density, 8 > 0 is a constant, uniform density gradient along z, and p' is the
density deviation from the horizontal average. The kinematic viscosity z' and molecrlar
diffus.vity D of the fluid are assumed constant and uniform. After application of thc: well-
known Boussinesq approximation, the governing equations for the fluid velocit, u with
zero mean and the density fluctuation p' are

V, = 0, (2.1)

Su Vu = p'g V (p + pgz) + \72 u, (2.2)
- + P 0 P 0

apt + u . Vp' = 3u3 + DV 2p', (2.3)

where g = -jg with g > 0, j is the vertical (upwards) unit vector, and p is the fluid
pressure.

Our earlier work considered various limiting forms of (2.1)-(2.3) for which one of g or )i
was taken equal to zero. By a suitable non-dimensionalization of Eqs. (2.1) - (2.3), we will
show that under certain conditions the terms containing g and f may also be negligible in
a stably-stratified fluid. It is convenient to define a normalized density fluctuation 0 such
that it has units of velocity, 9 = V tip'. Use of 0 instead of p' in (2.2) - (2.3) modifies
the terms proportional to g and 3 into tetras proportional to N, where N = V--0po is the
Brunt-Viaisai frequency associated with the internal waves of the stably stratified flow.
The mean-square statistics -(u22 and 1(0') are the kinetic and potential energy of the
fluid per unit mass, respectively. The equations of motion conserve the total energy per
unit mass in the absence of viscous and diffusive dissipation.

Now, defining dimensionless variables as

=t- X U= , P= 2p9o0) = (2.4)

- 10' O ' u0 potlo 2  F(
where 10, uo and 09 are as yet unspecified length, velocity, and normalized density scales,
the equations of motion (2.1)-(2.3) become

V-U = 0, (2.5)

.9U1 00 1v~
5- + u. UVU = - - -oVP+ 2  (2.6)

80 i 0 UO 1
a"• + U. V O I -o-oU 3 + -IVe®, (2.7)

where
Pc -•~ 0  =A[ --- , a

Nb R 01 (2.8)

The dimensionless groups F0 and RA can be regarded as initial Froude and Reynolds
numbers of the flow, respectively, although their precise definition is yet dependent on our
specification of lo, uo, and 0o; a is the Schmidt (or Prandtl) number of the fluid.

__ _ ____ ____ ____ ____ ____ ___
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3. Three large Froude number flows

We show here that particular initial fluctuating velocity and density fields in a stably-
stratified fluid can result in the establishment of distinctly different flows when the initial
Froude number of the turbulence is large. The important point here is that with well-
chosen initial flow fields either or both of the source/sink terms, (those terms proportional
to the inverse Froude number in (2.6) and (2.7)), may be negligible over long times.

Flow 1: Isotropic turbulence transporting an isotropic passive scalar

We consider an initial generation of isotropic velocity and density fields of comparable
integral scales and kinetic and potential energies. We identify the unspecified length scale
10 with the initial integral scale of the flow, and uo and 6 0 with the initial root-mean-square
values of the velocity and normalized density fluctuations, respectively. If Fo >> 1, both
of the terms multiplied by 1/F0 in (2.6) and (2.7) are small initially. Over times in which
these terms remain small, the velocity fluctuations decouple from the density field and the
turbulence decays isotropically while transporting an isotropic passive scalar field.

Flow 2: Isotropic turbulence in a passive scalar gradient

Here, we envision the generation of an initial isotropic velocity field with given kinetic
energy and integral length scale, and no initial density fluctuations. We identify !i and ur"
as in flow 1. However, the initial conditions introduce no intrinsic densiy scale, So that 0
attains a value close to unity, we set the dimensionless group multiplying U3 in (2.7) equal
to one, yielding Oc = N10. The dimensionless group multiplying 0 in (2.6) then becomes
11F2, so that if Fo > 1, this term is small initially. As long as it remains small, the
generated density fluctuations are passiv zz2 the resulting equations govern the evolution
of decaying isotropic turbulence in the presexte of a mean passive scalar gradient.

Flow 3: Buoyancy-generated turbulence

The fluid is assumed to be initially at rest with some given random density distribution.
We identify lo and Oo with the initial integral scale and rcot-mean-square value of the 0-
field, respectively. So that U attains a value of order unity, we set the dimensionless group
multiplying 0 in equation (2.6) equal to one, yielding uo = ,v'-Nb-oG. The dimensicnless
group multiplying U3 in (2.7) is now equal to 1/1F%, so that if F0 >> 1 this term, is small at
the initial instant. Over times for which this term remains small, the resulting equations
govern the evolution of buoyancy-generated turbulence.

How long do the above flows evolve before the effects of the neglected terms become
important? Consider the evolution equations (2.6) and (2.7) after the flow fields have
evolved over a time t. The relevant length, velocity, and normalized density scale of the
flow are now those which characterize the fields at time t. The source/sink terms are of the
same order when the velocity and normalized density scales are of comparable magnitude.
This condition is satisfied by flow 1 from the initial instant. However, the density scale 6'
and velocity scale u' at time t in flows 2 and 3, respectively, increase from initial values
of zero and can be estimated as 0' cc Nu't in flow 2, mad u' oc 110't in flow 3. Hence, the
density and velocity scales become comparable when t > 1/N. also, the Froude number
of the flow at time t can be shown to be proportional to 1/Nt, so that it also becomes
small when t > 1/N.

.2
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We have thus axriv-.Qd at the intuitive result that physical effects associated with inter-
nal gravity waves affect the flow dynamnics only after an evolution time comparable to
the period of the gravity waves. For flows of initially large Froude number, the velocity
aznd density fields evolve over many turbulenze time scales before internal waves become
dynamically important. Ilente, similarity states associated with each of the above flow
regimes may be established before a significant decrease in the flow Froude number. In
the next Section, we briefly review the salient features of these similarity states.

4. Asymptotic similarity states at larg,'. roude numbers

The similarity states which develop in tle above flows depend on the form of the kinetic
and potential energy spectra at low wavenumbers. Defining the kinetic energy spectrum
Ek(k, t) and the potential energy spectrum Ep(k, t) to be the spherically-integrated three
dimensional Fbourier transform of •(ui(xt)ui(x + r,t)) and ½(9(x, t)9(x + r,t)), respec-
tively, we write an asymptotic expansion of the spectra neaw k = 0 as

Ek(k,t) = 27rk 2(B0 d B 2 k2 +...), Ep(k,t) = 2wrk 2 (Co + C~k2 +...), (4.1)

where B0, B 2 ,.... and Co, C2 ,... are the lowest-order coefficients of the expansion. For
brevity, we consider here only flowai 5elds for which B0 and Co are non-zero unless the entire
spectrum is zero. The invaxiance of one or both of these low wavenumber coefficients lead
directly to the establishment of different similarity states.

Flow 1: Isotropic turbulence transporting an isotropic passive scalar

The low wavenumber coefficients B0 and Co are septately invariant (Saffman, 1967a;
Corrsin, 1951), and when they axe non-zero the high-Reynolds number asymptotic results

for the kinetic energy, scalar-variance and integral scale may be determined by dimensional
analysis to be (Saffman, 1967b; Larcheveque, et al., 1980)

2 6 3I

: o (92) CaB0 oC Bd t (4.2)

The nature of this similarity state is such that the kinetkc and potential energy spectra
decay without ;hiage of shape so that stationary spectra may be defHned by the appropriate
scaling of the wavenumber and spectral amplitudes.

Flow 2: Isotropic turbulence in a passive scalar gradient
The passive density (scalar) fluctuations for this flow are generated by velocity fluctua-

tions along the direction of the mean gradient; consequently, the low wavenumber coeffi-
cient of the potential energy spcectrum is no longer invariant in time. Rather, CO depends
directly on the invariant Bo, N and t by

Co(t) = !12B(t2 (43)3i "
Use cf (4.3) in (4.2) yields the asymptctic growth of the scalar Nariance (Chasnov, 1994)

(2) (4.4)
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Flow 3; Buoyancy-generated turbulence

Here, the velocity fluctuations are gererated by density fluctuations and BO is no longer

invariant; however Co is invariant. The coefficient B 0 is related to Co, N and t by

Bo(t) = Zw 2C'0t2. (4.5)

and substituting (4.5) into (4.2) (Batchelor, eC al, 1992)

(u 2 cc (N2C~o)Ut-, (12) cc Co(N2C)-" 9 , I ( (N2Co)P. (4.6)

An interesting and unusual feature of the similarity state for buovancy-.gnerated turbu-
lence is an increase in the flow Reynolds number asymptotically.

5. The flow at small Froude numbers

After the stratified flow evolves over a time t -- 1/N, the Froude number is of order
unity so that the above large Froude number similarity states are no longer valid. As
the flow evolves further so that Nt >> 1, the Froude number may be exper! to become
small, and it is of some interest to consider whether a different similarity ate of the
flow field is established asymptotically provided the RLeynolds number of the flow remains
large. To construct a similarity state, an invariant of the kinetic and potential energy
spectra near k = 0 must be determined. Such an invariant does indeed exist and is
associated with the low wavenumber coefficient of the total energy spectrum E(k), defined
by E(k) = Ek(k) + Ep(k). An expansion of the total energy spectrum near k = 0 yields

E(k,t) = 2irk 2 (Ao + A2 k2 +...), (5.1)

where A0 = BO + Co and A2 = B 2 + C 2 are the sum of the low-wavenumoer kinetic and
potential energy spectral coefficients. The coefficient A 0 Lan be shown to be an exact
invariant of the flow. Here, we consider its value to be non-zero at the initial instant.

We thus have a new invariant Au upon which to base an asymptotic similarity state.
However, a straightforward dimensional analysis is now complicated by the addition of
another relevant dimensionless group, namely Nt, which is directly proportional to the
number of wave periods over which the flow has evolved. For asymptotically large Froude
number flows, Art is vanishingly small and does not enter into the scalings; however, this
may not be the case at small Froude numbers when ATi is large.

Despite the above difficulty, we nevertheless attempt a dimensional analysis of this prob-
lem by considering the evolution of the total energy of the flow, e = ((u 2) 4+ (0)) /2, for
which there exists an associated invariant A0 . Dimensional analysis then yields

e = c.Aot-((Nt), (5.2)

where we write the proportionality constant cc explicitely, and x is an urnknown exponent.
In addition to the total energy decay, it is of interest to consider the evolution of the

integral scales of the flow field associated with the total energy. The integral scales may

j -1
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evolve differently depending on whether they are measured parallel or perpendicular to
the vertical axis. Defining the horizontal integral scale of the total energy to be 1h, and
that of the vertical integral scale to be 4,, dimensional analysis yields

1h =chA'i (Nt) = c. oA3t i(Ntz) (5.3)

where cl, and cj, are proportionality constants, and y and z are two additional exponents.
A heuristic axgument can be given to determine the unknown exponent x. At small

Froude numbers, two disparate tirnescales of the flow exist: a fast time-scale of the wave
field and a slow time scale of the turbulence. If we assume that the correlation time of the
nonlinear transfer is directly proportional to the fast time scale 1/N, then dimensionally

d(u 2) 1  0 2'"(U 3, (5.4)

which may be integrated directly to yield the value x = 3/5 in (5.2).
We do not yet have have any a priori argument to determine the remaining unknown

exponents y and z. Rather, in the next Section we present the results of large-eddy
simulations in which all three exponents may be computed.

6. Large-eddy simulations at small Froude numbers
To obtain a high Reynolds number flow at small Froude numbers, we perform large-eddy

simulations of Eqs. (2.1) - (2.3) using a pseudo-spectral code for homogeneous turbulence
(Rogallo, 1981). For the subgrid scale model, we employ a spectral eddy-viscosity and eddy-
diffusivity similar to that of Chollet and Lesieur (1981). We take the initial kinetic energy
spectrum of the form given by Chasnov (1994) with the low wavenumber portion of the
spectrum proportional to V2 . The initial potential energy spectrum is taken to be zero. In
the large Froude number regime, this corresponds to flow 2 above: isotropic turbulence in a
passive scalar gradient Preliminary calculations showea that the horizontal integral scales
grew more rapidly than the vertical scales, in agreement with previous direct numerical
simulation resAts Rtiley, et al., 1981), and that it was optimal to use a computational box
Which was eight times longer in the horizontal directions than in the vertical. Accordingly,
we took a computational box length of 47 in the two horizontal directions and 7r/2 in
the vertiical direction, with a corresponding grid resolution of 512 x 512 x 64 so that the
grid rerraincd cubic at the biaallest resolved scales. With a periodic box, the horizontal
wavenun1•,ers then took the values k,,, k-- = 1/2, 1,...,128 and the vertical wavenumbers
k, = 4, 8,..., 128. The peak of the initial isotropic kinetic energy spectrum kP was placed
at a wavenimber of 64. Two computations were performed with initial Froude number
Fo = Uo/N 0o given by Fa = 16.5 and 93.2. In the definition ofF 0 , uo is taken as the initial
root-mean square velocity fluctuation, and lo = ,i-.r/kp. The computations were performed
holding u0 and lo fixeu and varying N by a factor cf approximately 5.65. The results of
the computation are used here to tzsc the postulated scalings given in §5 and to compute
values of the unknown exponents x, y, and z.

In Figure la, we plot the pcwejr-law exponent of t (i.e., the logarithmic derivative with
respect to t) of the total energy as a function of t/7-0 for both initial Froude number flows,
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(a) - (b)
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FIGURE 1. The energy statistics: - , Fo = 16.5; - - -, Fo = 93.2; (a) time-evolution
of the power-law exponent of c; (b) verification of the scaling relation given by (5.3) with

= 3/5.
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FIGURE 2. The integral length scales: , F= 16.5; - , FP = 93.2; (a) time-
evolution of the horizontal and vertical i. egral length scales of the total energy; (b)
verification of the scaling relations given by (5.4) with y = 0 and z = -2/5.

where 70 = bo/uo. The asymptotic value of the time exponent is approximately -3/5,
indicating a value of z in (5.2) equal to 3/5, in agreement with our heuristic argument.
In figure 1b, we plot the proportionality constant ca in (5.2), i.e., we plot the evolution of
e/(AG2/y-5a/6N3/b), for both initial Froude number flows. The approximate convergence
of the two curves at laxge values of Nt confirms the overall scaling given by (5.2), with
C, ; 1.6.

The horizontal and vertical integral scales of the total energy axe plotted versus t/ro
in Figure 2a for both initial Froude number flows. Evidently, a large-times the horizontal
integral 'cale is independent of the initial Froude number and the vertical integral scale
is independent of time. This implies that y 0 and z = -2/5 in (5.3). In Figure 2b, we

_i
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plot the evolution of cth and cj0 for both flows. Again the overall scaling given by (5.3) is
confirmed, with c,, ; 1.2 and cj, • 1.4.

We have thus presented findings of a new similarity state which develops at large
Reynolds numbers and small Froude numbers when the initial flow field consists of an
isotropic velocity distribution and no density fluctuations. It is also possible that the sim-
ilarity state which develops at small Froude numbers depends on the way in which the
initial flow fields are initialized. Metais and Herring (1989) demonstrated by direct nu-
merical simulations that the nature of the flow at small Froude numbers does depend on
the relative state of the turbulence and wave field before entering the low Froude number
regime. Some preliminary computations which we have performed verify that this is indeed
the case; we intend to report on these findings at a later date.
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Abstract
The evolution of the anisotropic structure of homogeneous turbulence in a stably-stratified fluid is investi-
gated. Our study is bosed upon a comparison between Direct Numerical Simulations (DNS), a statistical
closure model (auisotropic EDQNM) and its linear or "Rapid Distortion Theory" (RDT) approximation.
A very good sgreement is found between DNS and EDQNM. Particular emphasis is given to the reversible
conversion of turbulent kinetic energy into potential energy and to the angular dependency of energy in
spectral space. The rise of an irreversible trend controlled by nonlinear interactions as opposed to a
reversible trend controlled by linear motious is shown. t

1 Introduction
The theoretical and numerical works presented here are motivated to a great extent by recent experimental
studies on decaying stratified grid turbulence performed either in a windtunnel, by Lienhard & van Atta
(1990) and Yoon & Warhaft (1990), or in a water tank, by Barrett & ,an Atta (1991). The measurements
made in these experiments have a high level of spectral resolution and accuracy compared to the salt
water experiments reported up to now (e.g. Iteweire et al., 1986), which enable the authors to present a
more detailed picture of the decay process.

When the Froude number (ratio uf inertial to buoyancy forces) is much larger than one initially, the
turbulruce decays as a result of the usual cascade process. During this decay, buoyancy forces gain
importance with respect to inertial effects. When the Froude number becomes smaller than about two,
the large scales of the motion are influenced by the stratification and vertical transport is weakened, while
the small scales continue their normal mixing. LV show that the small scales are in universal equilibrium,
in other words they are not affected by the stratification. This picture is especially clear with regard to
the co-spectrum of the heat flux. For small wavenumbers a counter-gradient flux is observed, while for
larger wavenumbers the mixing along the 6yadient continues. This usually leads to a net flux along the
temperature gradient. It should be noticed that YW observe a net counter-gradiept heat flux for their
most stable run.

In the present study, we present results concerning the influence of the initial Froude and Reynolds
nutibers on the flow developmeat and the occurence of the counter-gradient heat flux. A form of
anisotropy in the small scales is also put to the fore. To get these results, we solved numerically a
hierarchy of mathematical models, namely (i) the fully three-dimensional Boussinesq equations (perform-
ing Direct Numerical Simulations), (ii) an Eddy Damped Qusi.. Normal Markovian (EDQNM) closure
model and (iii) its Rapid Distortion Theory (RDT) approximation.

The EDQNM model is a turbulence closure model in spectral space for axisymmetric stratified flow
(Cambon, 1989). The non-linear trander terms of energy between the various wavenumbers are explicitly
calculated and the full 3-D (axisymmetric) energy spectrum is available. The model is thus very suitable
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to study the aaisotropy off the flow. However, the validation of the EDQNM model by the DNS is a
prerequisite before reaching higher values of the Reaynolds number with the EDQNM model.

The RDT approximat'on consists of neglecting the non-linear energy transfer terms in the EDQNM
equations and highlights the importance of the linear terms in the decay process. Moreover, analytical
solutions of the RDT approximations can be easily obtained.

2 Equations, models and relevant variables
The Boussinesq assumptions for turbulence in a stably-stratified fluid give the following system of equa-
tions for the fluctuating velocity field u,.(x, t) and a modified temperature T(x, t):

+(O Jv 2),,+ OP = T803

(±+uj~--z'V ')T = (1)U

-o (2)

where Y is the kinematic viscosity (the Prandtl number is chosen equal to unity) and N is the Brfint-
Viakisai frequency. The definitioun of N,

X (#.79)1/2 (3)

involves the thermal expansion coefficient fl, the vertical mean temperature gradient 7 and the gravita-
tional acceleration 9. Equation 1 displays N as the unique stratification parameter if T is scaled as an
acceleration (using the coefficient fig), so that (T/N) 2/2 can be interpreted an a potential energy.

In order to include in the models the detailed dispersion law of the linear wave regime and to reduce
the number of variables, u~j and T are 3D Fourier transformed (superscript -). Then the 4-component
set (fii, t) is reduced to a 3-component set by introducin3g a new vector:

Oikt i~~) '!j~) 2 = -1 (4)

The rcduction of the number of components reflects the solenoidal property of the velocity field, in
accordance with equation 2, kjt~i = 0. The equation governing ii is directly derived from equations 1, 2
and reads:

+ &L2Oi(k, t) + N Ljj(k)6j (k, t) =J Mdjl(k, p, q) ij (p, t)6(q, t) d'p (5)

Here 0, and its statistical correlations of any order and related equations, can be studied in other or-
thonormal frames of reference quoted below; all tensorial properties are presered by such projections,
including the definitions of invariants (energy) *ad realizability constraint..

According to the Craya-Herring decomposition, a first orthonorunal frame (el, e2' 6) is defined such
that e3 is aligned with k (e? = &i/k) and el lies in a horizontal plane. We thus have:

Vd('i LAC (6)

Then (a', e7) generates fij, located in the plane normnal to k; @'eI- (vortex mode) and 02e? (wave mode)
contains respectively all of the vertical vorticity and all of thel vertical velocity of thelflow, whereas

@= I TIN solely contributes to the potential energy.
The local frame (el, e', e-1) is particularly convenient for studying the statistical quantities 1'Vi (k, t)

and IVj,(k, p, t) obtained from the two covariance matrices < ii*(k%01 (k) > and < fq*(k)0j (p)OI (q) >.
For axisymametric turbulence (simplest symmetry consistent with equations 1, 2) %4/2 has only four

non-zero components in (el, 0,03 ):

1-J 02 ~ 'P (7)
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which depend on k = Iki and cos(-gk) = cos 0. Thus 0j, i = 1,2,3 represents the different modes of
the spectral density of energy and 0 generates the vertical buoyancy flux, according to:

< 02> = 9j 6d3k

1<usT> = -bsin k (8)

Additional constraints are 01 = 02 and V- = 0 for cos0 = 4-1 (polar isotropy) and 0ib Ž 0, i = 1,2,3;
%620-1-12 >_ 0 (realizability). These four components ai- governed by the following system of equations:

(-!+2Wk)0ý(k,t = Tý

( +-+2,k2) 02(k,t) = T2 -(NsinO)vk

(-ý+2Wk2)Oa(k,t) = T3 +(Nsin0)t

(• + 2Yk2) 0(k,t) = TV, + 2N sin0(02 -3a) (9)

where Ti , i = 1, 2,3 and Tp are energy transfer terms which involve triple correlations. These terms are
zero in the linear viscous regime, which is given by the linear part of equation 5. This regime will be
referred to as the Rapid Distortion Theory (R.DT) limit.

In the extended EDQNM model (Cambon, 1989), the system of equations 9 is numerically solved with
an implicit treatment of the linear terms (exact in the RDT limit) and an axplicit form of T, and To.

The closure of these Lems derives from the application of EDQNM to equation 5. The procedure is
the same as for rotating flows (Cambon and Jacquin, 1989) and is not given here for the sake of brevity.
Only the crucial parameters, which are characteristic times connected with triple correlations, are quoted:

0`6'' = G.f [1 + INOkpi (a &in(-g, k) +,0 sin(-g, p) + ',in(-g, q))- (10)

with a,#3,7 -= 0,4-1 and Ge includes both viscous and eddy damping terms, according to standard
procedures, with one unique constant.

The sophisticated model 10 may cause realizability problems for particular initial data, because of
the sudden application of the stratification (the discontinuity in N leads to a discontinuity in Ok,'Y). so
the aimplest and less expensive model, which corresponds to N = 0 in equation 10, will be used tere for
the detailed study of the system of equations 9, in which the stratification affects explicitly the linear
terms. Note that although stratification effects are not explicitly taken into account in equation 10, they
do enter implicitly in the transfer terms, since they involve double correlations by means of the closure
assumption.

2.1 Direct numerical simulations: numerical method

In order to ensure energy conservation, equations 1 are rewritten using the vector identity (u. rJ)u =
. VIJU 2 1 ., . H.creu. Vxu thevorticity. d-..- - a c.bi ofd2.

The boundary conditions are periodic in all three directions. The spatial derivatives and nonlinear terms
are treated numerically using a pseudo-spectral method in Fourier space. Time marching is done using
a third order Adams-Bas•forth scheme. The viscous term is integrated exactly using the new variable
v(k) = u(k) exp(,Vk 2 t) (e.g. Vincent and Meneguzzi, 1991).

3 Results

3.1 Initial conditions and physical parameters

Six direct numerical simulations of a homogeneous stably-stratified fluid for a resolution equal to 643
are presented (see Table 1 for a description of these calculations). The initial condition consists of a
homogeneous and isotropic flow field, initialized with the energy-density spectrum
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Run N I/v t 017$/02 '03 Fr Re
1 2r/6 200 1.5 1.007 0.0 5.8 49
2 r/6 100 1.5 0.9967 0.0 4.02 27.5
3 w/3 200 1.5 1.007 0.0 2.9 49
4 r/3 100 1.5 0.9967 0.0 2.01 27.5
5 7 200 1.5 1.007 0.0 0.97 49
6 ,r 100 1.5 0.9967 0.0 0.67 27.5

Table 1: Description of the initial conditions (at t = to) of the 643 simulations presented in this paper;
to is the time at which the Briint-V ii frequency N is set to a non-zero value; dt=0.0125. We use
the following definitions: Fr = (u2 )'/ 2 /t1?N, i1, = f_*r < u, (z, Y, z + dz)ul(z, y, z) > dz/ < u• >,

Re = (u)')/21/P, with I = (3,/4)f0' E(k)!kdk/fo E(k)dk.

E(k) = 16 (2/w)1/2 U2 L4 k- 5 e.X[-2(k/k,) 2 ]. (LL)

E(ki) is the maximum of the energy spectrum and uo = rms(u) = rrms(v) = rxns(w); here ki = 4.760
(Orazag and Patterson, 1972; Metals and Herring, 1989; Gerz and Schuman, 1990). The Briint-VQailia
frequency is set to a nonzero value as soon as the triple correlations have built and isotropy is equal to
I (we use 41/02 as an indicator of isotropy, following Vincent and Meneguzzi). Let t = t0 be the time
at which stratification is added. Three different values of the Briint-Vaisiil& frequency have been chosen,
N = r16, N = I/3 and N = T. The corresponding values at t = to of a dynamical Froude number based
upon rms(u) and a vertical integral lengthacale of u are indicated in Table 1. Each of these three stratified
calculations has been carried out with two different values of the viscosity, M = 0.01 and I = 0.005.

3.2 Discussion of results

In figure 1 the evolution of the total energy (kinetic+potential) is shown as a function of time for the
stratified came with a Brint-Viasili frequency of N = x, for both the DNS and the EDQNM model. The
energy is made dimensionleso by its initil value and the time axis is scaled with the Briint-Visiil. period
2r/N. The results are compared with an isotropic run (N = 0), for which the total energy only contains
kinetic energy.

Figure 1 shows that for the isotropic case DSN and EDQNM are in good agreement, with a slope of
decrease of energy of-1.1 at the end of the run. However, the EDQNM model does not show any difference
between the isotropic and stratified case, whereas for the DNS the energy dissipation is clearly reduced
near the end of the run. (The other stratified runs we have performed display a similar behavior.) This
latter effect is due to a reduction of energy transer by the stratification. As discussed in the presentation
of the models, the EDQNM model that we use here takes into account only implicitely the effect of
stratification in the transfer terms. An EDQNM version with these effects explicitely incorporated in the
EDQNM closure (see equation 10) already exists (and works successfully for rotationnal flows). We are
currently working on the specific problem of realizability for the case of stratified flows.

In figure 2, we consider the contribtutions of the kinetic energy to the total energy in both Craya modes
4P, and 02; the potential energy, denominated as 4 3, is also plotted. Only the runs described in Table
1 with viscosity L, = 1/200 are shown. Figure 2 shows that the EDQNM model compares very well with
the DNS, both qualitatively and quantitatively. The 01 mode remnins unaffected by the stratification,
while 02 and the potential energy show an oscillatory behavior, in a mutual exchange of energy. Note
that from equations 9, it appears that only these two modes contain a linear contribution due to the
stratification. Furthermore, the oscillations appear to be smaller for the lowest values of N (and of the
viscosity v, but this result is not shown). In other words, both a higher initial Froude number and a
higher initial ReyDolds number reduce the oscillations. We will come back to this point further on in this
paper, where we will find that the non-dimensionalized heatflux is a good indicator of this trend.

Let us now consider the RDT approximation, which highlights the importance of the linear terms.
(figure 2c). A very good qualitat. e agreement with EDQNM and DNS is found, which confirms that
the oscillations in $2 and 03 are produced by the linear terms in the equations of motion. The decay of
energy is only due to the direct action of viscosity on all scales of motion.

The RDT approximation is a very convenient reference case, when considering the dimensionless
heatflux < nT > /(< w2 

>< T2 
>)1/2. This quantity is a measure of the correlation of the velocity
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and temperature field. On integrating the RDT appioximation of equations 9, it is found that the
dimersionless heatfiux is independent of the initial spectrum prescribed as well as on the viscosity. When
the time-axis is made nondimensional by Ni/2s', it becomes also independ3nt of NI and reduces to a
unique form, which can be considered as a low Reynolds and/or Proud. number limit,

In figure 3, the dimensionless heatflux is shown for all values of N and v, versus the normalized time
Ni/2sr; the RDT case has also been included. The data collapse very well with this scaling. (Such a
scaling has already been used successfully by Lienhard & van Atta, 1990, and yield an analogous collapse
of data caracterizing the stratified turbulence). In the prevent case, both a strong stratification (high value
of N) and a high viscosity tend to increase the dimensionless heatflux. The DNS results for P = 1/100
are in somewhat less agreement than for v, = 1/200. One reason might be that EDQNM model becomes
less apt to properly model flow dynamics when the Reynolds number is low.

The fact that the P.DT solution is independent of the viscosity does not necessarily mean that the
maxima and minimnaof correlation reached are 4.41 or -1. The correlation is scrambled by the dispersion
relation for the linear taims which makes every wavenumber mode to oscillate with a different frequency
N sin 0, depending on its angle 0 with the vertical direction,

In order to give an explanation for the dependency of the correlation on the Reynolds and Froude
numbers, we need to realize that in terms of spectra of energy, linear terms are only dominant where the
non-linear terms are weak. Hence, the oscillations will be present for small wavenumbers and are thus a
phenomenon of the large flow structures.

For the R.DT, linear terms will be present at all scales and impose an upper limit to the correlation
between velocity and temperature field that can be obtained. Now since the RDT limit can be regarded
as a low Reynolds number reference, increasing the Reynolds number will inevitably destroy a part of the
correlation. For high Reynolds numbers, the linear terms will eventually disappear and the correlation
will reach the positive value of about 0.7, found for the case of a passive scalar. It is worth noticing that
in most grid turbulence experiments, the Reynolds number is higher than the values considered in this
study, and this may very posibly be responsible for the non observation of any counter gradient heatflu.x.

The influence of the initial Froude number is les clear. On the one hand it is evident that a stronger
stratification promotes the presence of the linear terms and thus a stronger correlation. But on the
other hand, we represent the time scale in a non-dimensional form, using the Briint-Viiskli period. For
instance, when the heatflux reaches its moot negative value at Nt/2r - 0.4, time has advanced 6 times
further for the case N = 1r/6 than for the case N = w. So, although the stratification is much weaker in
the former case, viscosity has had much more time to reduce the non-linear terms. We can only conclude
that apparently, the balance is such that a stronger stratification produces a stronger correlation.

As a final result, we will make a remark on the development and the definition of flow anisotropy.
We will use results from the EDQNM model. In figure 2, the classical type of anisotropy is expressed by
means of the spherically integrated spectra of 01 and 02. This confirms the statements made above that
a reversible kind of anisotropy is produced by the linear terms in the equation of motion and that this
anisotropy is limited to low wavenumbens (figure 4a).

We found that on the other hand an irreversible kind of anisotropy develops, which has the character
of a directional (angular) dependency of the spectra. This is illustrated in figure 4b, where the energy
spectrum is given for three different spectral angles 0, between the wavenumber vector and the vertical
direction. (cos 0 = 1 corresponds to the vertical direction).

We have found that generally this irreversible kind of anisotropy is stronger for higher Reynolds
numbers. Also the effect is important in the region of the spectrum where the non-lineax terms are
dominant, as is conflmed by figure 4b.

4 Conciusions

We have investigated the influence of the initial Froude and Reynolds number on the evolution of freely
decaying stably stratified turbulence. We have compared results obtained by means of Direct Numerical
Simulations (DNS) on a 64' grid with those of a statistical EDQNM model extended to anisotropic flows.
The results of the comparison are as follows.

The EDQNM model compares very well with the DNS results, both qualitatively and quantitatively,
especially for the high Reynolds number case. However, for the DNS a reduction of the energy transfer
terms has been found, which is not reproduced by the EDQNM model. A more elaborated model is
actually being developed; such a model has already proved to successfully reproduce the reduction of the
energy transfer in the case of rotational flows.

It is shown, on using Rapid Distortion Theory (RDT), that the linear terms in the equation of motion
I



are responsible for the oscillatory behavior observe.d and that they are located at the low wavenumber
end of the energy spectrum. The RDT serves as a referene low Reynolds limit case in which linear
terms dominate. These terms create a strong oscillatory behavior of the dimensionless heatflux with
periodicalJy counter gradient heat fluxes. As the Reynolds number is increased, the linear terms become
relatively less important and the correlation between the temperature and velocity fields decreases.

A high Froude number has in principle the same effect, since it makes the linear tams IS important
compared to the non-linear ones. However for a given dimensionless time Nt/27, the corresponding low
value of the Briint-Viiasli. frequency N, makes that time evolves longer than for a high value of N and
thus non-linear terms have more time to decrease. We found for the Froude and Reynolds considered
here that a high Froude number reduces the correlation of the velocity and temperature fields.

We furthermore found for the EDQNM calculations that it is necessary to distinguish between two
different kinds of saisotropy. The directional anisotropy is caused by the linear terms Lad has a reversible
character. The second kind of anisotropy describes the directional dependence of the energy density and
is not reversible. The tendency is such as to create a surplus of energy in the vertical direction (the pole
of the spectrum). This trend corresponds in physical space to a larger variability in the vertical direction
than in horizontal planes, in accordance with pancake turbulent structures observed in the atmosphere
for instance (e.g. Dalaudier et Sidi, 1994).
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Figure 1: Evolution of the total mean energy (kinetic + potential) l/Eo, as a function of Nt/2r for both
DNS and EDQNM (v = 1/200; EO is the initial energy of the stratified run). For the isotropic case the
potential energy is zero and the time-axis has been multiplied by N/2-r with N =r.
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Some current problems in stratified turbulent flows

C W Van Atta

Applied Mechanics and Engiueering Sciences and Scripps Ins•ltion of Oceanography,
University of California, San Diego, La Jolla CA 92093

INTRODUCTION scalar properies, and so the rate of stiiing and mixing
of the fluid increases. But for the density sua-ified case

An essential ingredient of turbulent flow is fluctuating Schowalter et al (19.94 a,b) found that the initial
vorticity, and the main effect of stable stratification on formation of the "streamwisc" vortices produces
fiL;cating vorticity is the baroclinic generation of new baroclinically generated vorticity of opposite sign at the
voticity, acccording to Bjerknes' famous theorem. stable interfacs and baroclivically generated vorticity of

the same sign as the iniial vortices at the statically
There is presently uncertainty over which, if any, unstable poitions of the inteface. The net result is that

well established properties of turbulence in the vortices ifrmed at the stable, portions of the intprface
homogeneous fluids can be expnrted for use in stably ar much weaker ttan in the homogeneous cas, and the
stratified fluids, and, when these laws fail to describe the 3-D stirring and subsequent molecular mixing is
behavior in the stably stratified case, what must replace dominated by the vortices formed by the convective
them. instability on the statically unstable parts of the

interfae.
"This talk will attempt to illustrate the flavor of some

current research problems by considering several A conceptual model of Broadwell and Breidenthal (1982)
questions presently under study which address aspect- of examines the rate at which a turbulent shear layer
the evolution of baroclinically generated vorticity in actually molecularly mixes the different species in the
turbulent flows. Woth qualitative. and quantitative two streams, which depends on the rates of entrainment,
differences with homogeneous fluid flow behavior will macroscopic deformation, and molecular diffusion.
be discussed. Entrainment is the slowest step unless D<<v, where D

is the molecular diffusivity and v is the Linematic
BAROCLINIC VORTICITY GENERATION viscosity, In gases, Dtv - I and entrainment is the
IN THE STABLY STRATIFIED MIX[NG bottleneck. In liquids, however, v may exceed D by a
LAYER factor of hundredr or more, so that entrainment and

diffusion may bota provide important consuaints on the
To clearly illustrate the process of baroclinic vorucity mixing rate. Many analytical, experimental, and
generation we first look at the initial, laminar, numerical studies have been made for the homogeneous
development region of a stably stratified turlident shear fluid case. By comparison, only a few -esults are
layer undergoing Kelvin-Helmholtz instability. This available (e.g. Kuop and Browand, 1979) for th-, stably
instability plays a prominemt role in both agmospheric stiatified turbulent mixing layer, and the time would
and oceanic shear layers, and may often be observed in seem to be ripe for more experiments, numerical
cloud patt-ins. As an idealization of real geophysical simulations, and analytical models.
flows, consider a laminar shear layer flow in which
lighter fluid flows horizontally over a heavier fluid, EFFECTS OF MEAN STRAiN ON
wfi g&ravity acting in ihe ver. i .• l &ection. Wi -_he TURBULENCE DYNAMICS IN A
interface between the two fluids of different denk:ty STRATIFIZI) FLUID
moving at different speeds rolls up due to Kelvin-
Helmholtz instability, a cross section through the -H In flows over vertical topography in the ocean and
rollez looks like the spiral pattern of a jelly roll. The atmosphe the bunching together (or divergence) of the
jelly is one fluid, the dough is the other. In some mean streamlines in a vertical plane is accompanied by
places along the interface between the two fluids one a similar buncting (or divergence) of the isopycnals
ha3 light fluid over heavy (statically stable) but at (surfaces of constant mean density). As the isopycnals
others one finds heavy fluid ever light (unstable). For a bunch together the mean density gradient increases, and
homogeneous fluid. hi the next step of the instablility where they diverge the mean density gradient decreases.
process three-dimensional voftices form, smaller in Thert are thus two, sometimes competing, effects,
cross section than the K-H billows, which have their mean strain and spatially variable buoyancy effectu.
axes wrapped around the K-H billows. These 3-D 1he turbulence levels and vertical turbulent transports
vortices are efficient at URansorting momentum and can be highly variable in such flows. The question

- - . - - - - - - - ~ -- - - - _ - - - - _ ,



Aarises whether one can expisin this betafuior as an efftwt fluctuations grow spatially with x withniut r~ound,
of th e rnan strain of the flow and the spatial changes LP roughly exponer~tially wifii x. Similar behavior is
the Va[Lvala frequency N-'4,ip dpidz)"2~ on :he, Found ir diect numerical simulations in which the
turbulence. tirbulenee devclops in time, ralx than spatlaliy. If the

flow is stalbly stratfied Rohr et. a[ (1983) found that the
For hor.iogeneous fluids thie eflbrt of mean srain on growth rate of ft- airbulence is a dcesing functicn o'f
turbulence w&, examined 1-1 te early 19CO0's in the R~ichardson number fLt R<Rcr, and beromes
r~onnection with windl tannel. t'OlcAmmois, which were negaxive for R>Rc, witý' 7?, equal to roughly 0.3. For
employed to reduce. the relative turbult ac e% e~l uTU in0 P the turbulence kinetic an'-xgy producticn, kinetic
the streamn, where uf i.ý tkw rais streainwise fluctuation energy dissipation, and buoyancy sink term which
in velocity and U is the mean velocity. The prd,,: poeileeg r in balance, and th5 rms
longitudinal fluctundons decreabe possing through t~e energies ini the velocity and density fluctuations is

* cont, action, while the rmns lateral fluctuation w' coi~stznt. Lmere is, how-ever, a continwil spectral
increaues through the con'rxtion due to the stretchn tolgesastainplco
of streamnwise voitices (ProniW, 1933). -diat oquilll'zhun is not reached in way;, number space.

Thco simplest stably stratified flow for consideruion of Dire92) suggstthtth cical Rrcha-tio DNS)ofn~Re nalbc
The vst cl cotmacun cofine suggest that th~eae coheic nt Rih-structures iistrin nd aribiebuoyancy effi:Pts is flow of a rnight be a functinn of Reyaolds number, but thii' hasturbulent srttified flui with zero mean she&.- thzroug a n. ý far been seeý-n expedrinieirtay. DNS results aiss3

the flow io a snorter vertical exent, thus increasing the, homog..liueus shex~ flo-ivs in the form of horashoe-like
stratification strength and tenuinF, to damp vertical 'v' vortices orienvid nearly along 0- principal extansionol
fluctuationts, but At the same timie it stretches "mmzai direction and that the effA -of siable streutication
"~ongitdinal vorticeL as in the homogenceus case in redlucing the "ertical transpun -.~. associated with -a

Expeimets b Mooddsn ad -cn Ata (M) how weakeadnig of thes -ortival structures. '1hte observation
Expeint~'t byThoodden ad 'an ttn(194) how of such ztucturcs. she Ad they exist, is st rhailenging

that Lb- addition of stable stai'ainchanges the problert. Picclirillo and VatL Atia (1994a) hvav exmitLdd
evolution of u' very lIftle. Howev,&, w' decays more J large Scl-mie number restu.ts f Rohr rt &10(98,-,; to
mnpidly befoir the conLaction because of fte non zero Pr~ndtl number of order tat using tew~peratere
value, of N, and V~atn= out in the contraction. Thlen, as stratficafion in ais . 'Iliese Jam wpr- cbtaine. in a uc'.'vl
the flow leaves ti;, co~ntrction' v urprising behavior of strati ed shear flow cZhannel descri'.-d by Piwirillo and
w' is ooservmd. w C14-4 decrea.4s u, a very low levol, Van Atta (1994b). T.:e lowcrrvalue of a Pr njnbc-( will
und then uicteases to a r'Jative martimtu value and allow a mome definitive ýoni-afison of a direct nuwncrical
then oscillates t-.r =u rest v! its observed evolution! simulation, v.-kich are so iry limited lo siNall Pi, w-t~h

e:.pcriments. Scaic aspzu.4 of th-ýs.. data andi
The physi'-s behin&I a"hi beltawr becomes appai;e't simiurtnons will bt; compared in i-x present W1.~
when examining the evolution of the rm.s denAity

*fluctuatiou p'. p' 'lcreases befon Lside-, and after the DOES LOCAL 13OTVOPY !ýX.ST i .
contractiolt, reaching a maximum value at the same TURBULEN'T SHEAR FLOW!; 'N A
location whe-e w' reach~d a miraimunm, and tOwn STABLYt 3TRATIFIED 7LUIEi
dectraues. As?ý'i piioport opal to the ruti tiuctutirat
potencifnl energy 61' the vtrbulen(,.,, and w' is In Large Eddy Shi~ulations the form or tiu- small Sct'.7
proportion-.l to the 'luctuating kinetic ehurrgy of the motion~ must be Aissumed 1'efor-, doing a flY.Viturbulencc the observed behaviur reflects exchange of cakcl~atic'i. The m~rplest possible fotin is a sinaienergy between the potean~l and kinaztic enegis. Gerz scale turli4olnt field obeying the constrai,iis of locai

vericl kneicenrL- innuercalsiulaio-,which 0, homogeneous fluid -me sbou!4 expect to see oz
had a La'ioaza (1993)j found aio fimsr cugzrowt ofithel ;sotro.r in the srig sWo ion a'o' origlen sdeasflow

veloity11atuaionfield, aod suggested the i-4 provided iliat. fte scale 'qaparatior. Zetwee.i large and
zai.-Oie turbulence toc, dibepthephnomcncn. sm~ cl s i fficieatly large. *Local lswtwpy"

meats isotfopi: behavior over a c stain rtstricted or

FLOWS isotrqjlc hehavicr of spectra, gradient Inoorac';, etc. ame
derived~ purely from ki, ýinatical and c.inunuity

In horgiogeneous turbulen~t shea flows, the knoan aruet o r,ým dyn..ýTicz. A large keynolds
velocity U 'h the x directiot: is a linear function of the numnber zs not necessary fo~r local i -tropy, 4ut die

'zeral coordinate z, i.e. U(z)=a~z. All stat.istical 4xtenz ',t the regir-n of local, isotrc-,y is exi;zted to
.,~anities r-e indeperident of z. Expermnents sbo.w that increase with Reyn-.Ids number. 'De smallest scalesmi
for a n'nstitatified, homogenzous fluid the zurb':lence a low Reynolds number turbulenr Low often -tbibit
produc;ion exceeds (he dissipation and the 've-ocity iocal isotrocy. Hrvvit seems mt~s'aable timt if the



rutia of mean .rain Li fluctuating st.ain is large enough difficult far experimantalists to achieve and is presently
ant- would oxpect ani.;otropic behavitr. For energy not yet possible even for direct numerical simulations.
spectra of the veloci'y and scalar tiuctuations,
Kolmogorov's idea appmars to bit borne out.
Experiments and DNS at low kx show isotropic REFERENCES
behavior at th- s•m•llest scales only, while experiments
in the laboratory, ammosphere, and ocean ,how that the Bwadwed JE rat Breidothal RE, A simple model of
extent of isotropy increases as R) increases. For a ndixidg wA chemical reaction in a turbulert shear layer.
review and recent laboratory experiments at high Rx see J Fluid Mech 125. 397410 (1932).
lPrzskovsky et al (1993). For moments of velocity qnd Dahm, W:A, Scudland KB. and Buch KA, Direct, high

.,*.iargra, Je~sthea•,ilabe dia howa mrke deree rewlution, four-dittwiional measureanwts of the Finee
scal gradients te available data show a marked degree sa: syucu of Sc>>l molecular mixing in turbulent
of anisotropic behavior, This is at first puzzling, as flows. Phys. Fluids A, 3(5), 1115-1127 (199)).
tuking gradients is expected to emphasize the Ce=r DT and Yamazaki H, Direct numerical simuaion uf
cantributions of the fine structre. However. as is well buoyancy -ien turb-le4ae in stably stratified fluid.
'tnown for nondifferendiated velocity and temperature 1 Fluid Mech , 206, 563-594 (1993).
fluctuations, such moments to include contributions Holt SM Kosoff JR, a FPezrser JH. A numerical study of
from all scales, can be very sensitive to sharp gradients the evolution and struncue of homogeneous stably
found near the edg3s of large scale coherent staucres, stratified -';cued rtmbuleoc:. J 'luld Mech, 237. 499-
"nr~d arc generally not ,itabla for examining psicular 539 (1992).
wave numbe; ranges for locally isotropic behavior. The Koop C Wd Browand FK, Istability and turbulerce in a

stratifi.d fluid with shear. J Fluid Mech, 93,135-159
degree of tucal isotropy may be unambiguously (1979).
examined by comparing the relative behavior of spectra Piccl:rillo P and Van ArA CW, The evol:ti-XL of a
Af the gradients diredy with the ippropriate rclazions uniformly sahaze,. tf•.mdlly stratified uirbulem flow,
tor local isotropy, a discusr-ed in Van Atta 0991). ; Fluid Mich. (in prer ation, 1994a).
This h. yde' to be done for turbulent Ahear flows, as Piccir•ro P awd Van Ana CW, An expeximental facility for
mott sties to date havu meaaiired only momrcnt and producing thsanaally stratifled urbnlent flovws with
not tha spectnr jf gradients. An exceptiýon is t1h work arbitrary velocity and density profiles. Lqperim-ent in
of Dahin et al (199]), in which it was found that the FiN,'dr, (in rL½&srton, '994b).
spectra of the small scale scalar gradient field (all ihre Peandt L, Arxirng aty air steam in wind tunnes,com were measuree) obeyed isotropic inns NACA TM, 726 (1933).COriOlC, t5. -Prmskovsky AA, Krfyakin M Yu, and Kuznisov VR,
within the unceitainty of the somewhat limited Fxptr:Tciital verification of local isotropy assumption
statistitc.2 sample. in high Rtriola number flows, in Proceedings of tha

Third European Turbulence Coqerenca. Stockihulrn,
But what is the explited behavior in a stably stratified 1990 (1991).
flow? If a range d scales exists that ar- not affected by Rohr tJ. Itsweire EC. Hetiand IMW, and Van Atta OW,
str•ification !han there might be local isu'owpy in that Growth and de.cy of turbulence it, a stably stratie.,
ruse. The common wisdom celis us that in a steady shear flow, J Flird Mech, 195, 771 l1 (1938).
stat: stratification nost strongly affec scales large Scl.-w-Qe DG. Van Au CW, and U.sheras 1C, A study of

aaea-nwise vortex stlrcture in a stratified shear layer,
than the Ozalidov scale Lo = (gN')'n, where e is the submitted to J f;uid Mech J994a).
dissipation rar of turbulent kinsvtic energy, and that in Schowalcer DG, Van Ana CW, and Lashý-a& XC. Baror•iic
declaving shear ra• turbulence stratifitation should affect gencration of ireamwic* vor.icity in a stratifide shcr
the lrgest scales first. Howevex, Thc.roddsen and Van latyer, Maccanica (in preýs, 199%b).
Atta (1993) found exptrimentr.lly that for demayh'r Thorodsen ST and Van AuI MW, The influence of ,tUle
stratified g&d turbulence moments and spxctra of stratifiation on bunall-staie anisotropy and

dissipation in wurbulenze, J. Geophys. Res.- Oruars,
veoiy avticwhc mp'~~ h iQfe 97. C'3, 364:7-3308 (92

and initially obey isotropic relaions early in the decay, ,otoddr n ST and .an Atma CW, The effect of nwan scama
very strongly departed from isotropin behavior right on turbulence dyamnies in , stably stradiftt fluid,
after the beginning of the decay. A similar behavior is J Fluid Mech (in press, 1994).
found for temperature gradients. Since one would have Van Aua CW, Local iiotro..y of dte .rrn.llest scales o'ý
cxpected the 1rgest Wcales wo be affected firsi, it is turbulent scalbr and velocity field3, Proc. Roy. Soc.
surprising that the gradienms ate affected even beforte London Ser. A, 434,139-147 (WV 1l).
thete are large effects on large sc"'e properties like
turbulence intensities and buoyancy flux. Peataps the
range of scales in these experimerts is too small to
expect substantial local isouopy under strafihed
con$'aons. It would Vr. very umeful to ;rave farther
experiments or numerical sLnulztions covering several
more decades in RX. Such a range would be 'vbr
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Diffusion in the Presence of Stable Stratification

J.R. Herring and Y, Kimura
N.C.A.R., Boulder CO 80307

U.S.A.

Abstract
We examine results of direct numerical simulations (DNS) of homogeneous turbulence

in the presence of stable stratification with the goal of contributing to -nderstanding
the effect of stratification on eddy-diffusion, and the distribution of pairs of particles
released in stable stratified fl,w. Both rotatitg and non-rotating studies will be included
in our purview. On a simple level, stratified turbulernce may be considered as a mixture
of turbulence (with vortex stretching) and waves, with the waves at laiger scales, and
turbulence at smaller scales ( smaller than the Ozmidov scales (Ozinidov (1963)). We first
discuss whether such characterization is reasonable. This asesssment is made by comparing
DNS results for diffusion of a scalar with simple closure estimates, which are extensions of
the method introduced by Larcheveque and Lesieur (1981) to the case of stratified flows.
As may be expected, the stable stratification reduces the pair separation in the direction of
stratification, and leaves the separation in the transverse directions unaltered. The pair-
dispersion is well predicted by a theory which includes the aaisotropic natuxe of ike ilow
and incorporates the Brunt-Viisiilii frequency as a damping rpte for dispersal. We also
discuss the reduction of eddy-diffusion due to stratification, and compare the numerical
findings with the theoretical estimates of Csanady (1964) and Pear.on et al. (1983).

1. Introduction

The inhibition of eddy transport by stable stratification is a topic of interest both in
atmospheric and oceanic dynamics. The source of this inhibitiov. is clear if we recall that
stability implies that the total energy is partitioned between waves and turbulence, and
only the latter is efficient in eddy transport. In this paper we exaraiae this issue using direct
numerical simulation (DNS), and simple scaling laws and underlying concepts drawn from
the statistical theory of turbulence. Such statistical ideas are cleanest at asymptotically
large Reynolds ntunberz, a domain remote from DNS. However, the basic assumptions of
the statistical theory apply eoually to low Reynolds number, rapidly decaying flows, and
in this paper we check to see to what degree DNS and statisdc.ie, theory agree in the low
Reynolds number limit (Rx - 20). Our method is to use the statistical theory to extract the
functional dependence of dispersive effects on turbulence spectra and control parameters,
and compare these to the DNS. More importantly, the DNS should provide clean and
ipndependent duta quantifying the effects of stratification. Sec. 2 records the equations
of motion of the DNS, and describes simple statistical predictions for eddy diffusion and
particle dispersion in the presence of stable stratification. Sec. 3 describes the numerical
techniques of the DNS, and discusses its relation to statistical theory.

1,
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2. Eddy Conductivity and Particle Dispersion for Stratified Flows

(4) Eddy Diffuion with Strat•fication.

We sketch some theoretical notions about the effects of stratification on eddy diffusion.
We do this within the limits of incompressible Navier-Stokes which we write in standard
non- dimensional farm:

(8, _ UV 2)u = -uV' u - Vp+ g0 - 2• x u (1)

(0, - V 2 )0 = -N 2 w - u. V0 (2)

v.. 0 (3)

Our notation is that (u, 0) are the velocity- temperature fluctuations. The (z, y, z) coni-

ponents of u are (u, v, w). N is the 3runt-Viis5li frequency, gIW(aI/8)/To, and

g = (0,0, -1). In the present preliminary version of this paper, shall not discuss the
effects of rotation.

Consider first unstratified turbulence. We may estimate eddy conductivity by the
formula of Kraichnan (1976), (see also Lesieur (1990) for more discussions):

(2/3) dkE(k)/'q(k), (4)

where E(k) - (1/2)(1 u(k) I2 ) is the kinetic ewergy spectrum, q}(k) the eddy circulation
time at scale 27r/k. In Herriug et al. (1982) p. 4 1 9 et seq. it is argued that an approximate
formula, derived from the Test Field Model (TFM), is

ki

?7(k)- rf dpp'E(p) (5)

Conider next how effects of stratification may be included by modification of (4). Folklore
has it that stratification means waves (oscillations at large scales), and " turbulence "
(overturning events) at small scales. The dividing scale between these is the Ozin: ov
scale at which the eddy turnover rate is equal to the gravity wave frequency. Denoting
this scale by k0 , we estimate its value from:

At large Rtoynolds numbers, for which E(k) c 2/ 3 k-5/3, ko = 9-J3/. A naive suggestion
is that wave--motion contributes little to particle dispersion, so that (4) should be replaced
by:

N,•dd = (2/3) dkE(k)1lI(k) (7)

2
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Of course, we must take account of the change of E(k, t) induced by stratification. A
closure estimate of E(k) is obtained by equating the energy flux to small scales (e) to the
integral of the energy transfer, T(k),

(O, + 2vk 2)E(k) = T(k) (8)

and evaluating the latter as entirely local in wave number space. Thcre results:

S= {k'E(k)/(t,(k) + N)}E(k)[kj ()

Here, {.1 is the square of the turbulence force, (ti(k)l(etmated here as - k3E(k)))
times the length of time this force acts (,- 1/(N + Vk3E(k). The factor [k] estimates
f/{etc.Jdk', an integral over all scales that comprise the net flux, C. Note that (9)
juggests that the energy spectrum changes from its wave dominated form (V/'-Cfk- 2) to
the turbulence dominated form ( 2/ 3k-b/3 ) at ko. Then using (9), (7) becomes:

s/Ndy " OlIv 2  (10)

We remark that (10) also results from Taylor's classical formula that evaluates rddu in
terms of an integral of the Lagrangian autocorrelation, U(x, t I s), along particle trajecto-
ries:

j..d, U(x, I s)ds (11)

U(x, I ) a (u(x,t) U(xK, IS)), (12)

provided we take for the Lagrangian decorrelation of U(k, t 1 9)

U(.,t I s) ~ U(., t t)exp{-(,C(k) + ,sin,(0)N)(t - s)} (13)

Here, 19 is the angle k makes with the vertical. Of course, the exponential characterization
in (13) is a matter of convenience rather than of accuracy.

(b) Pair Diipersion.

Let 1'(p,t) be the probability density that two particles of fluid initially at
(r1 (0), r 2 (0)) have a displacement p at time t:

1'(p, t) = (6 (p - (ri(t) - r2 (t))) (14)

where (.) denotes an ensemble average, and

dr(1,)(t)/dt _=_ u(r(1,2), t). (15)

Here u is the velocity field, aud d/dt{,} is the rate of change of {.} following particle
trajectories: =_ (Ot + u. V){.}. Here 6(.) is the initial unaveraged distribution of particle
pairs (Dirac's delta function). The equation of motion for 'P is:

0?(p,M) = ((U(t) - U2 (t)). V,,p6), (16)

3



4946 = (u1(t) - u2 (0), Vp6, =0'

6 = 6(t = 0) + j dsZAu(s). V.6(s), = (17)

al'(p, t) = (AMu ) VP J dSA(u(s)) • V'9(s)), (18)

where Au(t) u= (t) - u 2(t). At this point, we invoke a quasinornmal factorization of the
ensemble mean, and interpret the time integrals as along Lagrangian trajectories. Thus,

(9 P s)=W At)-V"IdAup)).- V,,)(p, a) (19)

The evolution of moments such as

(PnprO J dPPnP'P(P' ) (20)

follows f'om (19) after partial integrations:i'
otpn.P>) = f ds(2U.,.(ot I •) - U,.C(p, t 1 ) - U.,,(p,'t I S)) (21)

In the long time limit, the terms depending on p may be dropped, and the frst term is just
the eddy conductivity, (4), as is well known. A crude estimate of dispersion is obtained by
fist writing the Lagrangian decorrelation U(p, t I a) in its wave-number representation

U(p, t 1 8) J dkexp(-tk p)U(k, t I a) (22)

and then approximating U(k,t I a) by (13), with 77(k) given by (5). In (22) we assume the

total decorrelation is that produced by the internal (random) strain (V/fJ p2 E(p)), and
stratification. We estimate the net effect of these by their product. Here, t9 is the angle k
makes with the vertical.

The derivations of this section are quite heuristic in nature, and are presented to
introduce various statistical quantities, and their possible utility in relating DNS results
to theoretical concepts.

3. DNS Results and Discussion of Theoretical Issues

The DNS consists of an initial Gaussian isotropic velocity field, which is allowed to
decay. After one eddy circulation time (when the skewness factor builds up to its nominal
value of -. .5), stratification is introduced, and temperature fluctuations are induced via
(3). The basic code and numerical procedure is described in Kimura (1992); our treatment
of the stratification is similar to Mitais and Herring (1989). In order to obtain particle
trajectory information (as well as Lagrangian covariances, as in (11)), trajectories were
computed by solving dX(t)/dt = u(X, t), with cubic-spline interpolation used to get the

4
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necessary fine-scale information for X(t). The method is thus quite similar to that of
Yeung and Pope (1989) and Yeung (1993). Computations were carried out on NCAR's
IBM SPI, at resolution of 64'. We plan to refine these calculations at higher resolution
(1283 -- 2563 ), possibly on the Cray 3. At that stage, we shall also implement large-scale
random stirring, in order to investigate stationary turbulence.

Fig. 1 shows histograms for the vertical dispersion of particle pairs for cases N 2 = 0,
(a), and N2 = 50 (b), at t = 3.0. Initially, the inter particle-pair distance was .5 mesh
lengths. These distributions are un-normalized. Notice that stratification severely inhibits
diffusion in the vertical, a result similar to that found by Riley and Metcalfe (1990) in
their study of a turbulent patch introduced into stably stratified fluid. As time proceeds,
(t > 3.0) the unstratified histogram continues to broaden, while the stratified histogram
widens extremely slowly, if at all.

Fig. 2 illustrates the effects of stratification on enstrophy. The N2 = 0 (case (c))
shows the familiar pattern of elongated vortex tubes, while for N2 = 10 (case (a)) we
see flattened vortex patches. Further analysis of this case (not shown) shows that the
enstrophy here is comprised mainly of vertical vorticity. Fig. 2 (b) shows the temperature
fluctuation field for N 2 = 10; a pattern similar to (a) for the enstrophy. It would be of
interest here to also examine the associated heat flux distribution, wO.

Fig. 3 shows the mean vertical dispersion of particle pairs for (N 2  =

0,1,2,5, 10,20, & 50). At late times, there are step-like increases in (p2), which may be
explained by the relationship between (p') and the Lagrangian autocorrelation function
(see (21)).

Normalized autocorrelation functions are shown in Fig. 4, for several values of N 2 .
Notice that (4N, T) has an oscillatory behavior, much like that proposed by Csanady
(1964), and as crudely paraneterized here by (13). It would be of interest to explore the
functional form that should replace (13), and this can be done with the numerical data
presented here, especially if extended to the stationary case. An interesting question here
is the extent to which Csanady's model,

R~r) = exp(-pr)sin(ar + 6) (23)

is accurate.

Figure Captions

Fig. 1 Distribution function, 'P(p, t) for N 2 = 0 (a ), and N 2 
- 50 (b).

Fig. 2 (a,b): Iso-surfaces enveloping regions where enstrophy (squared vorticity) or
squared temperature fluctuations (b) exceed 4 times their averaged value for N2 = 10.
(c): Iso-surfaces enveloping regions where enstrophy exceeds 4 times its averaged value for
N 2 = 0.

Fig. 3 Mean vertical dispersion of particle pairs, (p2)(t) for N 2 = 0, 1, 2,5,10,20,50.

Fig. 4 Lagrangian velocity auto-correlation function (w(to)w(to + r))/(w2 (to)) for
N2 = 0, 2, 10, 50. Here, to is one eddy circulation time (about twice the time needed for
enstrophy to achieve its maximum for the unstratified case).



References
Csanady, G.T. 1964: J. Atmoj. Sci., 21, 439.
Larcheveque, M., and M.Lesieur, 1981: J. de Micanique, 20, 113.
Lesieur, M. 1990: Turbulence in Fluids, 2nd Edition.Kudwar Academic Publishers,

Dordrecht. 412pp.
Herring, J. R., D. Schertzer, M. Lesieur, G. R. Newman, J. P. Chollet, and M.

Larcheveque 1982, J. Fluid Mech., 124, 411.
Kraichaan, R. H.: 1976, J. Atmoj. Sci., 33, 1521.
Kimura, Y. 1992: Proceedings of NATO Advanced Research Workshop on " Topo-

logical Fluid Dynamics ", 1-5 Nov. 1991,(H.K. Moffatt, R.M.Zaslavsky, M. Tabor, & P.
Comte, Eds.), Kluwer Acad. Press, Dordrecht, Netherlands.,401.

Mitais, 0. and J. R. Herring, 1989: J. Fluid Mech., 202, 117.
Pearsoa, H.J., J.S. Puttock, and J.C.R.Hunt: 1982 J. Fluid Mech.,129, 219.
Ozmidov, R.V.,1965: Izv. Acad. Sci. USSR Atmos. Ocranic Phyts., 1, 493.
Riley, J.J., & Metcalfe, R.W., 1990: Stratified Flows, E.J. List & G.H. Jirka Ed., Am.

Soc. Civil Eng., N. Y., N.Y. 10017- 2398, 541.
Yeung. P.K., 1993: 91" Syjmposium on Turbulent Shear Flows, Kyoto, Japan, August

16-18, 1993, 17-2-1-17-6.
Yeung. P.K., and Pope, S. B. 1989: J. Fluid Mech., 207, 531.

6

w*

I



1

(a) N2 =0

1 3
100

OW 0102 0 00

101 1
0 00

0

100 0

-4 -2 0 2 4

10 4 - " , . . " " '' . .

(b) N2= 50

10 3

o•

102 8
0

1 F- 0
F~00

10 '

10

100 . .-. I a j ,.

-4 -2 0 2 4

Fig. 1



a) b)

A ~ Fig. 2



0.0

1.0

0.1 2.0

4- 5.0

S_ 10.0

20.

V 50.0

0.01

0.0011 111 III111

0.01 0.1 1 10

t

Fig. 3



ON GRADIENT-TRANSPORT TURBULENCE MODELS
FOR. STABLY STRATIFIED SHEAR FLOW

C. Kranonburg

Dept. of Civil Engineering, Delft University of Technology. P.O. Box 5048, 2600 GA Delft, The Netherlands

The gradient transport model for stably stratified horizontal aear flow in which eddy diffusivity and viscosity
arc assumed to depend on the gradient Richardson number, Ri, in augmented with terms representing the finite
adjustment time of the exchange coefficients. Barenblatt et al. (1993) showed that using such a model, initial
value problems for the formation of a stmp-wise structure of the buoyancy distaibution axe well posed. The model
pioposed is analyzed taking into account the interaction between buoyancy and velocity fields. A condition fur
the formation of steps is derived from a linear stability analysis. Numerical computations show that a realistic
stop-wise finestruoture develops, provided linear instability is allowed on a finite interval of Ri only.

1.Int n

In simple gradient-type turbulence models of horizontal shear flows the vertical transports of
momentum and scalar quantities like mass or heat are assumed to be proportional to (minus)
the vertical gradients of mean velocity and scalar, respectively. Under stably stratified
conditioas the proportionality coefficients, that is, eddy viscosity and diffusivity, decrease
with increasing gradient Richardson number Ri, because the strztification reduces the
exchange. As a result the vertical distributions of mean velocity and buoyancy associated with
the calar quantity are coupled, Ri depending on both velocity and buoyancy gradients.

Gradient-type turbulence models have been hivoked to explain the development of step-wise
structure (a system of layers and interfaces) in buoyancy distributions observed in the deep
ocewn, lakes and estuaries. Phillips (1972) consitered the buoyancy equation only, and
suggested that. an effective diffusivity related to the eddy diffusivity could become negative
for large Ri thus leading to instability and possibl~y a step-wise structure. Posmentier (1977)
solved the buoyancy equation numerically and obtained a step-wise buoyancy profile for a
liearly unstable case. However, substantial filtering was needed to suppress instabilities,
which arouses some doubt as to what turbulence model was actually considered. Krarznburg
(1982) showed that including the interaction between buoyancy and velocity fields results in
more stable behaviour, and argued that solutions should be stable because ensemble-averaged
model equations way no longer exhibit the small-scale instabilities of diffusion-type models
with negative diffusivity.

ilarenblatt et al. (1993, hereafter BBDPU) stated that such models are inadequate because
initial-value problems are ill-posed and solutions are non-unique. These authors took into
account the finite adjustment time of the turbulence by introducing a time delay in the eddy
diffusivity together with a Taylor expansion for small time delays, and showed that in this
way a well-posed problem results. BBDPU presented accurate numerical solutions of their
model equation, and thus were able to show that in the linearly unstable case a step-wise
structure evolves from an initially smooth buoyancy distribution. 13BDPU did not consider the
interaction with the velocity field.

On the experimental side, Long (1972) reported the spontaneous development, at a
particular value of an overall Richardson number, of three layers in the stratified shear-flow
apparatus also used by Moore & Long (1971). Ruddick et al. (1989) observed the formation
of multiple layers and interfaces in a laboratory tank in which a linearly stratified liquid was
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present initially. The liquid was stirred so as to avoid generating a mean flow. Layers
developed provided stirring was weak, although a minimum level of stirring was needed
presumably to overcome molecular effects.

In the work reported here the suggestion of BBDPU is explored in conjunction with the
interaction between mean buoyancy and velocity fields. The finite adjustment time of eddy
diffusivity and eddy viscosity is taken into account, in Section 2, in a somewhat different way
by augmenting the usual relationships between exchange coefficient- and Ri with terms
consisting of the time derivatives of these coefficients multiplied by a time constant. In
Section 3 the linear stability of the turbulence model thus modified is addressed, and
numerical solutions are presented in Section 4. In Section 5 the implications for the
development of finestructure are briefly discussed.

2. Mathematical mtodel

Consider a stably str-atified shear flow that is horizontally homogeneous so far as mean
quantities are concerned. Assuming the vertical turbulent transports may be modelled as
gradient transports and adopting the Boussinesq approximation, the conservation equations for
mean horizontal momentum and buoyancy are

, i(K aLu (2.1)

aB " ( B/(2.2)

where U is the mean horizontal velocity, B = -gbplpo the mean buoyancy, g the acceleration
of gravity, Pa a reference densiy•, 6p the deviation from Pa, z the vertical coordinate
(positive upwards), t time, and K. and K1 are the eddy viscosity and eddy diffusivity.

The method of averaging, which defines U and B, for example, is not trivial here. If the
mean quantities were ensemble averages, step-wise solutions would be unrealistic. The initial
conditions affect step-wise solutions for all times because of the intrinsic instability of these
solutions. As a consequence, steps would develop at different levels in each realization so
that, upon averaging, smooth ditributions of U and B would result. For step-wise solutions
to be physically acceptable, mean quantities tlerefore must be assumed to represent horizontal
averages obtained from a single realization,

As also noted by BBDPU, second-order closure turbulence models are usually based on the
balance equation of turbulent kinetic energy. An additional equation is needed to estimate the
length scale of the energy containing eddies, and the exchange coefficients. A formal
expression for such equations can be written as (e.g., Launder & Spalding, 1972)
a =s(2.3)

where T is a turbulence parameter, e.g., turbulent kinetic energy, or dissipation rate, and S,
a source term representing production, destruction and redistribution of T. Because Sy does
not contain any time derivatives, equations like (2.3) can in principle be combined to yield
evolution equations for the exchange coefficients of the form

49K
K s,, (2.4)

where K = K. or K. and SK again a source term. In local-equilibriumn models the time
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derivative of K is aeglected, which gives SK = 0. In a model of Prandtl-Kolmogorov type
SK o - K + uJF(R!), where u, is the friction velocity, I a length scale of the large eddies
under neutral conditions, F a positive damping function representing the influence of
stratification (F(O) 1- I and dFIdRi < 0 for finite Ri), and Ri = (,aBIz)(aU/az)2 the gradient
Richardson number (Ri > 0). Expressions that do take the finite adjustment time of the
exchange coeffidents in this mc-el into account therefore are

K, + u1F(Ri) (2.5)

,r = -Kb + u. 1F,(Rz) (2.6)

where. c is a time scale of the large eddies. Equation3 2.5 antd 2.0' ensure that the exchange
coefficients never become negative. The length scale I is not well known for stratified flows
so that using (2.5) and (2.6), quantitatively correct results are not easily obtained.

Equation 2.6 is the counterpart of the expression proposed by BBDPU (equation 2.5 is
new). A first-order regular asymptotic expansion for raKaOt -* 0 gives, when applied to
(2 6),

K, - u.l[F (RM) - c FL (Ri) (2.7)

where the prime refers to diffaren,!ation with respect to Ri. Equation 2.7 is equivalent ýo
equation (15) of BBDPU. However, the time-derivative term in (2.6) does not always remain
small for large wave nambers. BBDPU show that it is the behaviour at large wave numbers
that determiaes the ill-posedness or well-posedness of initial-vale problems. Some difference
between the models !herefore exists.

An alternative formulation of the eddy diffusivity would be to replace (2.6) with an
expression also resulting from algebraic stress/flux turbulence models,
Kb K. (R) (2.8)

where a, is the turbulent Prandtl number, which in free turbulence 4icreases with Ri (e.g.,
Mizushina etal., 1978).

Introducing dimensionless vaiLbles according to U = Uj1 , B = BIB, t = Tt7, t = TI'.
K =- uJK" and z = hz*, where the asterisk (superscript) denotes a dimensionless variable,
and Tand h are constants, equations 2.5 aud 2.6 become (the asterisks are dropped)

. W + - F.(M) (2.9)

Equations 2.1 and 2.2, and the expression for Ri, romain unchanged by putting T = h2l(uJ)
and U, 2 = B~h. If it is assumed that c - IINt, wheae N1 is an overall buoyancy frequency
given by i ==.varn, the dimensionless nine constant will be of the order of (i/fl)/Ai.Here Ri. = Bth/u, is an overall Richardson number.

3. Linear stability analysis

The undisturbed velocity and buoyancy distributions are assumed to be time-independent and
linear functions of z. Perturbations are introduced according to
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U(Z- - Uo + *.[Z + u(z,r] (3.1)

B(z,4- B0 + Y,[z + !bz,:)] (3.2)

K., - F. ÷ + . (3.3)

K,, = + k (3.4)

where Uo, BO, y,. y, F,0 = F,(Ri) and Fb = Fb(Rio) are constants. Here Rio =yg•,,.
Substituting trom (3.1) - (3.4) and linearizing, equations 2.1, 2.2 and 2.9 give as

perturý.waion equations
+uF8u ,k (3.5)

8b 5 92b _ kb (3.6)

+ k. =R Ab 2 -a (3.7)

8kb RIO rF~k2 (3.8)

A harmonic solution to (3.5) - (1.8) is sought by putting
u = u. exp it +&z4 (3.9)

b = b. exp (Xt + ifz) (3.10)

where x is a real wave number, X a possbey rAmplex frequency, and uA and bh are constants.
The solutionrs awe linearly stable for ReX . 0, whereas Re% > 0 imnplies instability of the
solution.

The case where X is complex with Rel > 0 is not acceptable from a physical point of
view. Numerical calculations using the full set of equations in this case produced wave-like
solutions in which inLt..aces co-timtend to tiavel up and down -bween upper and lower
boundaries of the compkitatio•ial domain. Such reasults are at variance with the experimental
evidence a(dressed in the Intveduction. Therefore, onily linearly unstable solutions having ImX

0 can be phyaically realistic.

Substituting from (3.9) and (3.10), equations 3.5 - 3.8 yield a homogeneous, linear set of
equations. Equating the coefficient detennhinnt to zero gives as a dispersion relation (the
subscript 0 is dropped)
-c% + [1 + i-(FI + F,)]XI + -(p Ai•b.)X + K"O 0 (3.11)

where
p - + F + -i(F - 2F1) (3.12)

q FF., + Ri(FlF,, - 2FF.) (3.13)

Vort c= 0 eqnation 3.11 reduces to a•i expression derived by Kraneuburg (1980). The
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stability of a solution given by (3.9) and (3.10) de,1dL; oxi the signs of the coefficlents p and
q. Equation 3.12 can be wAtte as

p = (1 + ýJF. - (2 - •3-RiF. (3. 14)

where Rf is the flux Richardson number given by If -; Ri I4/K,., which in the undisturbed
situation is equal to Ri FIF.. For stable stratification it may be safely assumed that c," <
2. Equation 3.14 then shows that a sufficient condition for p to be postive is dRfldRi > -1,
which condition seems to be 1n agreement with abservations (e.g., Mizushina et al., 1978).
Therefore, p is assumed to be positive hereii. Equation 3,11 then will yield unstable
solutions, nnly if q < 0, which condition -.n be written as

d < 0  (3.15)
'OF Fj

If q < 0 instability occurs for all wave numbers K, and X is real. Condition 3.15 i. more
restrictive than the condition dRfldRi < 0 obtained for zero mean-velocity graditit, see the
discussion by Ruddick et al. (1989), for e~xample.

Equation 3.11 show, that for a pur.y diffusive model (, = C) the growth rate X is
proportional to x2, that is, X. -+ oo for K -> oo if q < C. If z> 0 the growth rate remains fL-te
for x -+ o,
XT' -->- q(3.16;

BBDPU show that it is this difference in beh~aviour far i: -+ co that results in well-posud initial-
value problems for c > 0. in this sense the present ,nodel shows the sam- behavioum- as that
ef BBDPU. Equation 3.16 also shiows thai for large wave number the leit -hand side terms in
(2.5) and (2.6) do not necessariy remain smnll.

As a= example consider the often u=d damping thnctions
coo (3.17)

1
b ___ = _ (3.18)

(1 + DMRO

where in, n, a arnd 13 are posi',;e constants and a,, = v,(O). The instability condition (3.15)
then becomes
n > ?rM + 1 (3.19)

In the case of the equal sign an additional condition is 2P3m > c(2m + 1). If (3.19) is
satisfied, instabili-ty will wsue beyond a certain w.Ilue of Ri. It is shown in Section 4 that such
an unbounded instability intcrval has fa-reachbig consequences as to the chlracter of the
solutions obtained.

Condition (3.19) i; quite restrictive. The well-known Munk-Anderson and Rossby-
Mozitgumery relations, for exampie, do not satisf- it. Excluding a run with low Reynolds
number, the labn-aroxy dasa of Mizu..Ana et il. (1978) can be represented fairly wc• with m
•- 0.5 to 0.7 and n v 2.5 to 3-0, which vales do satisfy (3.19). However, instability, if it
occurs, teads to be only marginal.

The above analysis was repeated using (2.8) rather than (2.6' to moddl th- eddy diffusivity.
In this case ?. was found to be always complex when Re% > 0. As stated before this



alternative for step formation therefire is not physically realistic.

4. Numad-cal. computations

Equadon; 2.1, 2.2, 2.5 and 2.6 together with the damping functions given by (3.17) and
(3.18) wecae solved numerically for unsteady, stratified Couette flow. The initial conditions
censidered are
U(z,O) = 1,z - 0j. - l)z 3  (4.1)

B(z,O) R-•[,Z - (04 - 1)W9] (4.2)

where Riu is an overall Richardson number, A. and pib are constants (0 < 1, -< 3/2), and the
computational domain is given by 0 • z :5 1. Alternatively, the plane z = 0 is z plane of
antisymmetry in a flow domain given by -1 < z < 1. The boundary conditions are U(O,t) =
B(0,t) = 0, U(1,t) = 1 and B(1,t) - Riu. The equations were solved using an 5xplicit scheme
that is of second-order accuracy with respect to space and of first order with respect to time.
No additional filtering was applied. The number of grid points, N, was chosen so as to obtain
convergence of the solutions. For the results presented hereir. N was equal to 200, which is
also the value ,wd by BBDPU. The time step w"s 1(C2N•) = 1.25 x 10W. To obtain
sufficient accuracy, the time step should be much le"s than the time constant c.

The results of ths computations showed that solutions were stable when the instability
condition (3.19) was not satisfied, and that solutions were initially unstable when it was
satisfied in a substantial subdomain of the flow field. It was fcwid, in the latter case, that in
a qualitative senie the solutions behaved in the same way for a wide range of the various
co.-ffifients involved, even in the case where the; shear rate was kept constent (this case is
obtained by puttiag 1. = 1 and m - 0, which gives OU(z,t)/z - 1). In some part of the
vertical a number of small steps in the buoyancy distribution developed sooner or later. ThIe
associated interfaces were stationary, but in the layers the buoyancy either increased or
decreased. A• a result layers always merged after some time to form larger steps, while the
merging process continue,. The steps in the buoyancy distributions were very distinct,
whereas those in the velocity distributions were more gradual. The gradient Richardson
numbers in the layers tended to zero, but those in the interfdaces were large (usualy > 1).
As already noted by BBDPU the formation and merging of steps proceeded more slowly when
"- was increased. In all cases having n > 2mn + 1 a steady state was eventually reached, in
which only two layers and one interface remained.

For the results shown in figure 1, the coefficients in the damping functions given by (3.17)
antd (3.18) were estimated from the measurements of Mizushixia et al. (1978). Thus the values
m = 0.5, a = 10 (in agreement with the corresponding Munk-Anderson relation) and n =
P = 3 were selected. The values of m and n werr. deliberately chosen so as to satisfy the
instability aondition (3.19). The neutral turbulent Prandtl number was equated to 0.7. The
rsUting maxim value i about 0.13 a R!i P 0.28. The criticai vaiuv of Ri beyond
which solutions become linearly unstable is about 0.53.

Figure 1 shows typical computational results. The four-layer structure at t = 2 has
developed from the merging of smaller steps. The process of merging is seen to go on: first
the upmost interface disappears, next the lowest one, and in the long run the central interface
i. the only one that survives. The way the interfaces vanish is in agreement with the
observations of Ruddick et al. (1989). A direct comparison with Moore & Long's (1971) or
Narimousa & Fernando's (1987) experiments is hampered by the large influence of sidewall
friction in these zxperiments. Including sidewall friction in the present computational model
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FIGUREI . Velocity and buoyancy distributioa computed using (3.17) ad (3.18)for in - 0.5, % - 10, n -

Nu 3 • l,i.- 5.0 x 10'. 14. - I and j&1 - 1.5. Notw offsets, Th solutionat t - 16 almost
coincidcs with the fiul steady-state solution.

showed that a two-layer flow and a diffused inter-face at mid-depth developed il the stable
case where no steps are formed. Such flow structure was also observed by Moore & Long
and Nariniousa & Fernando. Ilhese experiments therefore do not provide evidence for the
instability mechanism considered. A layered structure as shown in figure 1 was also obtained,
when sidewall friction was included in the linearly unstable case. Therefore, the three-layer
structure reported by Long (1972) seems to be in accord with the present results (the
antisnmmetric caso with -1 < z < 1).

The results discussed so far would lead to the paradoxical conclusion that eventually any
buoyancy distribution would develop, in the linearly unstable case, into a layered structure
with only one or two interfaces. Obviously, this result is at complete variance with empirical
e.vidence. The explanation for the continual merging of layers is that, if n > 2m + 1,
instability will occur for Ri up to infinity. The interfaces then never stabilize. Merging was
found to cease at a certain stage, when instability was allowed in a finite interval of Ri values
oaily. Small changes in the damping functions are sufficient to achieve this. An example is
I,, given by (3.17) in which m = I and cx = 5, and

0R . +02(2(1- Ri) i)2 (4.3)

IRI + 4 (1 - Ri)lf
These functions still agree fairly well with Mizushika et al.* s (1978) experimental results (the
facior 1.24 ensures that F. -> 1 for Ri -. 0). With these functions the maximal flux Richardson
number is about 0.20 at Ri - 0.57. The instability condition (3.15) is satisfied for 0.757 <
Ri < 1.243. A3 an alternative to obtain instability on a finite Ri - interval, molecular effects
could be invoked (Hearn, 1988).

A result of computations using the modified damping functk,,-s is shown in figure 2. This
figure shows a stable layer for z larger than about 0.54. However, numerous small steps are
formed below this level. As opposed to what is shown in figure 1, the merging of steps comes
to a halt and a steady-state finestructure develops. Similar results were obtained for other
values of the various parameters involved.

7



1 t-O 0.5 1 2 4 816 0 0.5 1 2 4 816

0.3 !
0 1 0 1'0.4 0.8

FIGURE 2. Velocity aud buoyancy dibtributiouS computed using (3.17) and (4.3) for ra - 1, a - 5, RI ,
1, 'C - 5.0 X 10f, p. - 1 and jt - 1.5. The plot on the right shows eWarged parts of two buoyancy

disbutions.

5. Dis n

The gradient-thrasport model in conjunction with the finite adjustment time of exchange
coefficiemns as proposed by BBDPU is able to mimic the formation, in shear flow, of small-
scale constant-density layers, which from a physical point of view would be a consequence
of the overturning of internal waves. However, the agreement may be of a qualitative nature
only, because no physical wave-breaking mechanism is explicitly included. In addition some
rather restrictive conditions must be satisfied to obtain the desired model behaviour. These
conditions seem to make the model a bit artificial. However, it is not inconsistent with
empirical evidence.. The buoyancy distributions shown in figure 2, correspond to those of a
mixed upper layer overlying a thermocline and a stratified lower layer in which finestructurm
develops. It remains to be seen whether such results are satisfactory in a quantitative sense.
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Experiments on turbulence in stratified and rotating flows
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Abstract
We present results of a novel set of experiments which investigate the structure of turbulent

stratified and rotating flows. The turbulence is generated by an array of sources and sinks
located around the boundary of a tank. The tank contains a linear stratification and the

sources and sinks are directed horizontally and are located in the same horizontal plane.

Their action is to extract fluid and to re-inject it with horizontal momentum but with a

minimum of mixing. In some of the experiments the tank is rotated at a constant angular
velocity about a vertical axis. Small, neutrally buoyant particles which follow the flow are
placed in the fluid and recorded on video. The video images are automatically digitised and
the particles located on each video frame and from this information various characteristics

of the flow field are detenmined. Up to 4095 particles may be tracked at any one time giving
high spatial resolution. In non-rotating flows the form of the motion is deternined by two
parameters: F = V/Nd, where V is the orifice velocity of the jets of diameter d and N is the
buoyancy frequency of the stratification, and the Reynolds number Re =Vd/v, where v is
the kinematic viscosity of the fluid. At high values of F vertical motions occur and

turbulent mixing takes place. A mixed layer is produced at the level of the sources and

sinks, and its depth increases with time by entrainment of fluid above and below. Under
these flow conditions ft scale of the motions observed are detemiuned by the forcing scale.
At low values of the forcing parameter F, the motion behaves in a qualitatively different
way with transfer of energy to the largest scale available within the experimental tank. Ihis
transfer of energy occurs because the vertical motions are inhibited and the flow is
approximately two-dimensional. As a result the 'inverse energy cascade' causes the energy
to accumulate at large scale. The dynamics of this large scale circulation particularly the
way in which turbulent eddies are excluded from its centre, and decay of the circulation
when the forcing is removed are investigated. In the rotating case the effect of rotation is to
introduce a further lengthscale, the Rossby deformation scale R = Nh/f, where h is the

depth of the fluid andf is the Coriolis parameter. At low values of the forcing parameter
the flow is again approximately horizontal with no appreciable vertical motion. Unlike the
non-rotating case, however, energy does not accumulate at the largest scale as a result of

baroclinic instability at the Rossby deformation scale. As a consequence eddies are
continually regenerated at small scales and they interact with each other in a variety of
ways. Merging, splitting by shear flow and interactions of vortex pairs have been observed

in this flow. One result of these interactions is the eventual predominance of anticyclones.
This bias appears to result from the observation that cyclones merge more readily than

anticyclones, and may explain why many sub-mesoscale oceanic vortices are anticyclonic.
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ABSTRACT
A series of experiments is described in which an oscillating grid, positioned at one end

and mid-depth of a rotating channel, filled initially with a linearly-stratified fluid, produces
a turbulent, mixed patch about itself. As the patch develops, it spreads down the channel.
Measurements are made of vertical density profiles at the grid both during production of
turbulence and after the grid is turned off, during its decay. Patch size and structure, Thorpe
scales, mixedness parameters and available potential energy are deduced from these
measurements, and the effects of varying the rotation rate, Q2, ambient buoyancy frequency,
No, and grid action K (Long, 1978), are investigated. During the growth phase, several
previous results are confirmed and extended (Davies et aL, 1991 - DFBS herein; Do Silva and
Fernando, 1992 - DF herein). During the decay phase, Thorpe scales are found to persist to
Ndt- 10 after turbulent production ceases, except in the case of no rotation, where they decay
immediately the grid is turned off. The potential energy of the flow, conversely, decays
rapidly in all cases, suggesting that mixing rather than ovrturning is an important mechanism
in the early stages of decay in rotating turbulence. This behaviour is also suggestive of the
fossil turbulence model of turbulent decay (e.g. Gibson, 1980).

INTRODUCTION
This paper presents a study of some aspects of the growth and decay of turbulence in

a rotating, Linearly-stratified fluid. In one sense it is a continuation of work previously carried
out previously on the same apparatus (DFBS). These authors measured the vwrtical extent of
mixed patches formed by the vertical oscillation of a horizontal grid in an initially-undisturbed
stratified fluid in solid-body rotation. Here, details of the internal structure of these patches
themselves are deduced, by using density probes with faster response times than those used
previously. In ail cases, the measurements of the patch structures were made within the
source region above and below the oscillating grid. The results are also compared with those
of DF. These authors measured many of the same parameters in a non-rotating experiment
in which the fluid was contained within a tank with vertical walls very close to the grid on
all four sides.

MEEASURE-MENTS
The measurements made here were concerned with length scales and other parameters

relevant to the growth of the mixed patch produced by the oscillating grid. The length scales
measured were the vertical extent of both the mixed and turbulent patches (the distinction is
explained below) and the r.m.s and maximum Thorpe scales, Lr and L1., (Thorpe, 1977).
The mixedness paraneter, defined by DF as y = 1 - (NINe)%, where N. is the ambient
buoyancy frequency and N is that of the mixed patch was used to measure the homogeneity
of the patch in relation to the ambient density gradient. Finally, the available potential energy
function (APEF) was also measured. This is defined (Dillon, 1984) as



AP.EF = 2(pC; p,(z) ]z, (1)1nPo j-1

where z is measured vertically upwards from the centre of the grid oscillation range, g is the
acceleration due to grity, n is the number of data points, p, is the mean density, p(z) is the
actual density at z and pT is the density at z in the Thorpe-ordered profile (Thorpe, 1977).
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Figure 1 Schematic diagram of the rotating tank arrangement used in the turbulent patch
experiments

APPARATUS AND PROCEDURE
A rectilinear, perspex channel (2.1 m lung x 0.46 m wide x 0.31 i m deep) was fitted

with a rigid lid to form an enclosed space -0.24 m deep into which the stratified fluid was
placed (Fig 1). At one end of the channel a grid suspended at an intermediate depth could
be oscillated vertically with an amplitude of -1.5 cm, at a variable rate (5 - 35 rad/s). The
grid consisted of a 6x4 array of square elements made up of perspex limbs separated by a
mesh width of 6 cm in either direction and extended across the whole width of the tank with
a spacing between it and the sidewalls of approximately 3 mm.

Density profiles thtough the turbulent patch at the grid were measured by traversing
the patch vertically with a micro-conductivity probe (Head, 1983). The probe was mounted
on the tank in the position shown in Figure 1 and traversed the entire depth of the fluid in
a little under 2 secunds, at a speed of-15 cm/s.

The tank was filled and its initial buoyancy frequency measured. The rotation rate of
the channel was then gradually increased from rest to within ±1% of the operator-specified
value. Once the required rotation rate had been reached, the system was left to rotate until



the fluid had reached a state of solid.-body rotation.
The rotation rate (Q2), initial buoyancy frequency (NO) and grid oscillation rate

(described herein in terms of the grid action, K) were varied between runs. A standard
combination of values was adopted, namely K2--0.16 rad s", No=l.0 rad s" and K = 6.0 cmrs".
Only one parameter at a time was varied from these standatd values. Experiments using this
set of parameters are referred to as "standard runs". Other than this set, the following values
were used: fQ = 0.0, 0.08, 0.32 rad s'; No = 0.5, 1.25 rad s';K = 3.0, 9.0 cm's".. Those
experiments in which Q was varied from its "standard value" are rnferred to as "a-varying
runs". N0-varying runs and K-vaiying runs are defined in a similar fashion.

The grid was oscillated in all
cases for a non-dimensional time aest ft
Nzt=200. This was chosen to be long
enough for a reasonable number of Upper
data points to be recorded, but short Interfuco
enough to ensure that the intrusive Profile Inner Outer

flow, generated at the grid and forced . Patch Patch
by the Coriolis force to flow as Size Size
boundary current, did not have time to
circulate the entire channel and return
to the mixed patch. Interface

Profiles were measured at
intervals of Not=20, to allow the Density
disturbances caused by the traverse of
the probe to die away. In order to Figure 2 Definitions of the mixed-patch and
obtain data of a higher temporal interface sizes used herein, as deduced from the
resolution than this, three identical Thorpe ordered profile
experiments were carried out for each
run: in the first of these, the first
traverse during the growth (decay) phase was recorded at the moment the grid was turned on
(off); in the second t five second delay was incorporated, and in the third a ten second delay.
A total of 8 standard runs were carried out: two each with 0, 5, 10 and 15 second delays.

RESULTS
Three different definitions of the patch size were used: the turbulent patch size, Lr,

is calculated, following DF, as the region in which all Thorpe displacements greater than 5%
of the maximum Thorpe displacement are found. This definition was found to cause some
problems, especially duiing the decay phase, when it was somewhat misleading. Therefore,
a mixed patch was measured from the Thorpe ordered profile using the method illustrated in
Figue 2. A straight line was fitted to the profile. Since the mixed patch is always
approximately symmetrical., this should pass through the ambient density gradient. The
maximum positive and negative deviations of the Thorpe ordered profile from this straight
line are found, and the distance between the depths of these two points is defined as the
"inner mixed patch size", L.. The Thorpe ordered profile is then tracked from the most
negative (positive) deviation from the straight line towards the nearest end of the profile until
the first point above (below) the straight line is found. The distance between the depths of
these two points is defined as the "outer mixed patch size", Lpo (this is the patch size used
by DFBS). (Lo - L-) is defined as the total interface size, Ir. Mixedness' of these two
patches were calculated, and are denoted as yj ("inner ruixedness") and 'y0 ("outer mixedness")
respectively.



Growth Phase Measurements 15.,

Figure 3 illustrates the 14.0

relationship between the three
patch sizes defined above. The 12.0

data shown are from the ..
standard runs. The growth can _ . - " " "
be seen to occ~ur in two phases:
in the first (Not < 15), growth is 6.0"
rapid since the effects of , P
buoyancy are not significant. ,..

Once buoyancy does take effect. 2.0-

the growth becomes much _.0

slower. Note that for Not < 5. 0 2b 40 65b "' 10120 1h0 IgO IN-

Lvr > Lt,, but that after this Not
period, c,- > Lpr > L4  in Figure 3 Relationship between the outer and inner mixed
general. L4 grows at a patch sizes (upper and lower solid lines respectively) and
significantly more rapid rate the "turbdient patch size (asterisks) during the phase of
than the other two scales. AUl turbulent production. Data are from the "standard runs"
the patch size data for varying
12, N, and K are collapsed by
scaling with (KJIN)"", as in DF
and DFBS.

Following DF, the ratio 1.0

L1 ,L1  was plotted against 5.9
mixedness. Most of the data
presented by DF are for y > 0.9,
i.e. during what they call the
"fully mixed" stage. Here, the
data here are for y < 0.9 u's

(Figure 4),- where y is the o.4, .,=

mixedness of the turbulent 0.3-

patch, aLs in DF. No discemable 0.2 -

variation due to either rotation,
buoyancy frequency or grid =

oscillation rate is apparent. 0 Q.1 0.2 0.3 0.4 0.5 0.6 0.7 o1 01.1

Most of the data are close to the 7
L,r/Lvr=O.1 line, in good Figure 4 Graphs showLg the (lack of) variation of LYr/LI

agreement with the (few) plots with the mixedness, y. Data from all runs are included
of DF in this range. Above y -
0.55, however, there is evidence
of slightly higher values, approaching DF's value of 0.27 for f > 0.9. The relationship
between Lir and Lr. for the growth phase is clearly unaffected by rotation: from these data,
T•ý7•-L. "= 0.35 - a value very close to DF's value of 0.365.

Mixedness is plotted, once again following DF, against Kt'Ln2?, for all the K-varying
runs in Figure 5, using the mixedness and patch size of the turbulent patch. Note that, as
observed by DF, the values of y for the lowest K-value runs are consistently higher than those
for higher K-value runs.



Decay Phase Measurements .a
A illustration of the

relationship between the three =
patch sizes during the decay i"

phase is shown in Figure 6.
Both Lw and L. show small C

fluctuations only, the foimer - 0.10

decreasing significantly and the
latter remaining almost constant.

4,r, on the other hand,
fluctuates markedly and
becomes smaller than Ly, on a
tiluescale of 0(1 s). 'o.1 to

Figure 6 also illustrates KULr72

the growth of the interfacial Figure 5 y vx. Kt/4., for the K-varying runs. Solid boxes
region during the decay phase. - K = 3 cm 2s'; clear boxes - K = 6 cm 2s'; asterisks - K =
The effects of vaiying ", No 9 cm's-" t.
and K on the total interface size,
I., were measured. The data
from the K and No-varying runs were collapsed 6i ge.,cral by scaling the interface size by
(KINo)"3 and the time by 11N,. Results from the il-varying cases show that an increased
rotation rate causes a monotonic increase in the rate of growth of 11 (KIJN,)"' during the decay
phase.

The mixedness parameter, 1, was measured for the inner and outer mixed patches in
every run. Almost all runs had indistinguishable yo's, which decayed very gradually from
-0.3 at Not = 0 to -0.2 by the end of the measurement period- the only exception was in the
case of no rotation, which decays faster than the rotational cases, especially after Not-50.

In the case of y, most of 18.0-

the runs show a very gradual 14.0

decrease frtom -0.9 to -0.85
during the measurement period. 12.0

The d~ata for the Q = 0 runs, 10. -
however, decrease notably more
rapidly after Not-20. .o

"lTe inmediate sharp 6 0.

drop of APEF once grid ,,
oscillation ceases is clearly 4.0,

illustrated in Figure 7. The data 2.01 N ,

are from the standard runs and I O M _ _

have been normalized by the CM 1U 20 3 711 HO

mean value at Not = 0. After Not
N~t-20, the data are found only Figure 6 Relationship between the outer and inner patch
in the region between 0 and sizes (upper and lower solid lines respectively) and the
0.05 - these can be taken to ua'bulent patch size (asterisks) during the turbulent decay
represent values due to ncise in phase
the probe, which becomes
prominent because of the very
small density gradient in the mixed patch. Data from other runs show a very similar trend.
It is noted that the data at Not.=5 and 10 hirrease with increasing rotation rate, suggesting that



APEF decays more slowly in faster rotating media. No dependence of APEF on No and K
is observed.

A linear plot of LyrLLr(No = 0) against Mot for data from the standard runs is shown
in Figure 8, for comparison with the corresponding plot of APEF decay in Figure 7. Unlike
the APEF, the Thorpe scale appears to be sustained at -80% of its inital value up to Nor-10.
It then decays rapidly until Not-25, after which time, it displays consistently low values. Data
from other runs show this soune persistence, except for the case of no rotation. The data for
LT,. show very much the same trends as the Lr data, suggesting that the spectrum of Thorpe
scales rcnains relatively constant throughout the decay phase.

DISCUSSION .1 -
Growth phase observations 1.0

"The initial period of fast .-- -.
growth undergone by the patch • oai.
appears to extend to Not - 15, 0.7
both in these experiments and 0.. o6
those uf DFBS. Th;s is 0 5
significantly longer thatn the Not 0.4-

- 4 reported by DF. This is W

assumed to be due to the • -
presence of an outflowing
intrusion, not present in DF's 0.0
fully constrained configuration, a 1i ,i 3a 4b 5" 6o 7i a0
which retards the growth of the Not
patch to the Ozwidov scale, Figure 7 Linear plot of the decay of the available potential
where it is arrested by buoyancy energy function (APEF) during the turbulent decay phase.
forces. aethis would not, The data are nonnalized mean values for each tine at
however, affect the ost of which pio'iles were recorded during the standard runs
mixing. Note that the patch

size measured by DF13S is
equivalent to 4-0 here, but that 1.1
those measured by DF are Le. 1.0
and those measured by visual 0.,
methods, sih as shadoe'giaphs 0-.
are likely to be Lp, since this is i 0'.
defined by boundaries at the 2
points of maximum Z~p/Dj' and 0A
it is variations in this parameter 0.5
that cause the light and dark 0.4.
regions to appear in 0-

shaduwgraphs. The definkions 0 .2-

given here provide an objective 0._
and consistent framework within o lib 2b 3o 0 50 70 80

which these. measurements can Not
be compared. Figure 8 Linear plot of die decay of L '. The data are

The growth of the patch derived as in Figure 7. Note the presence of values >0.8
size is shown to be unaffectedbyze rotatown anto be wna tell up to Not--10 - a feature absent from Figure 7by rotation and to be wellu
scaled foi buoyancy frequency

_____ __ _ _____ _ __



and grid oscillation frequency variation by (KIN0 )1 2, in good agreement with DIFS. The
agreement between the ratio Lr-L1,r, found here and that reported by DF is evidence of the
lack of effect of varying " N, or K on the behaviour of the turbulent overturns in the ranges
of those paam-eters used here. Comparison of the constancy of the ratio LrlLr for y < 0.55
found here with the results of DF suggests that Lý/Lpr only depends on y in the range 0.55
<y < 0.9.

"The plot of y agahinst Kr/4 2 (Figure 5) shows that values of y are consistently higher
for the K = 3 cmZs"l case than for the other cases. This is consistent with the results of DF,
who varied K by varying the solidity of their grid. In this case, however, the same g-id is
used in all cases and it is the oscillation frequency that is used to vary K. TIhis suggests that
an increase in mixcdness is due to a decrease in K rather than any individual factor that
affects it. If K can be taken to represent the input of energy by the grid, then this is
consistent with the reasoning that at low K there is less energy to fuel entrauinment
mechanisms at the interface, leading to a lack of unmixed inflow into the patch, so that the
mixed patch becomes well-mixed more rapidly. As the patch becomes more fully-mixed,
more energy becomes available to fuel entraingment. Thus entrainment and mixing would be
expected to occur more episodically at low.(glues of K and more continuously at high values.
Clearly, more data for a range of K-values are needed to test This supposition.

Decay phase observations
OClce the grid has been turned off, comparisons with the work of Dillon (1984),

Crawford (1986) and many others shows that the velocity scales decay within the range 0 <
Not < 3. Ro will decrease vapidly, therefore, and the piesence of rotation can be expected to
become significant during the decay phase. These results show this to be the case, in that the
patch in the non-rotating case behaves differently from those in the rotating cases: in the
former case, immediately followiýg the cessation of turbulent production, erosion of the patch
takes place across the boundary between the interfacial region and the inner mixed patch,
causing a growth in interface size. Once this sharp boundary has been eroded somewhat (at
Not - 25), restratification takes place, spreading from the inner patch to the interfacial region
at Not-50. "The behaviour of the patch in the rotating cases appears to be identical with that
seen in the fhst stage of the non-rotational case, namely the erosion of the inner mixed patch,
only at a slower rate, implying that rotation retards the restratification process.

The preservative effect of rotation is also apparent in the data concerning the effect
of rotation on the APEF and Thorpe scale decay. In the former, the evidence suggests a
decrease in the decay xate of APEF with increasing 12. Note that this decay occurs over
several buoyancy periods, and is certainly an order of magnitude slower than that observed
by Dillon, Crawford and many others for turbulent kinetic energy decay. That the two forms
of energy decay at very different rates is not surprising, given that different mechanisms are
responsible: the decay kinetic energy is due to viscous dissipation, whereas that of the APEF
is caused by sale diffusion and buoya-ncy-i-duced motions. Comparison of the results
obtained here for APEF and Lr decay show that, initially, overturnhigs persist whilst potential
energy decreases. Referring to Equation (1), the persistence of Lr corresponds to zi remaining
relatively constant. Since glnpo is constant, the initial decrease of APEF can only be brought
about by a decrease in p(z) - Pr(7z), i.e. by mixing, rather than buoyancy-induced motions.

The persistence of Th'.orpe scales in rotating runs, when compared with their immediate
decay in the non-rotating case is also evidence that rotation tends to preserve the
characteristics of the density profile once turbulent production has ceased. This persistence
after turbulent production has ceased for timescales an order of magnitude longer than the
often reported decay e-folding times for turbulent kinetic energy is suggestive of the definition



of fossil turbulence (e.g. Gibson, 1980). That background rotation appears to have the effect
of enhancing the preservation of vertical density fluctuations suggests that rotation exacerbates
fossilization.

CONCLUSIONS
(i) Objective definitions have been given for mixed patch and interface sizes derived from
Thorpe-ordered vertical density prailes. These have been found to be useful in determining
the development of the patch structure, during both growth and decay phases.
(ii) During the growth phase, LT/4r is found to be a function of the mixedness, y, only in die
range 0.55 < ? < 0.9. Also during this phase, low values of the grid action, K, are deduced
to cause consistently higher values of -y
(iii) During the decay phase, rotation is found to retard the restrtification of the mixed patch.
Diffusive mixing, rather than buoyancy-induced motions, are observed to dominate the early
stages of the decay of the internal structmre of the patch. A persistence of Thorpe scales is
observed at time scales an order of magnitude greater than that reported elsewhere for the
decay of turbulent kinetic energy. This is consistent with the concept of fossil turbulence.
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Computations of the buoyantly unstable Ekinan layer are performed
tat Io Reynolds number. The results are obtained by directly solving

the three-dimensional time-dependent Navier-Stokes equations with the
Boussine!,q buoyazr-y approximation, resolving all relevant scales of mo-
tion (no tu~rbulence closure is needed). The flow is copped by a otable
temperature inversiou and heated from below at a rate that produces
an inversiun-heighL to Obukh~ov-iength ratio - =I*- 32. Tempeiature
and vYelocity variaxce proffilas axe found to agree wel with those from an

vair:uigroue.1y heated -under-resolved computation -at higher Reynol&ds
number, and with: -,axdorE- & Willis' '1] experimental data. Significant
helicity is found in the la~yer, and helical convectiin patterns of the scale
of the inversion hieight axe observed0.

1. 1TOU'`TO
Due to the very large Reynolds numbers found in the atmosphere

[21, most numerical studies of the planetary boundary layer (-PBL) utilize
large eddy simulation (LES) (see [3]j49j, for example), The price one pays
for the ability to considerý realistic keyaolds numbers is the uncertainty
introduced by the LES' sub-gi cae(G)prmeiaTio nti

(and previous [1014[12]) work, the alternative strategy of direct numerical
simulation (DNS' is .Iserl: turbulent fields axe obtained by numerically
solving the tjbxee-diineusional time-dependeut Navier-Stokes equations,
resolving all of the relevant scales of motion, so that no SGS parameteri-
zation is needed. While only very low Reyrolds number turbulence may
be computed, the results axe free f-rom modeling errors, and can provide a
comnplement to inforn'ation found in the LES studies. The DNS data can
also be used as a reierence for Reynolds -averaged tin ~ulence closures, to
test the accuracy (and importance) of S'GS models, and nsome instances
([101-[121) be directly applied to high-Reynolds-number PEL flows.
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The focus here is on an idealization of the convective planetary bound-
ary layer (CBL), the buoyantly unstable turbulent Ekman layer. (Nnu-
trally and stably stratified results are presented in [10] and [11]; a sim-
ilar CBL study was recently made by Bohiert [13j.) The convective
case has the numerical advantage that the largest scales are the most
eneretic, which diminishes the significance of 9GS errors. This was re-
cently demonstrated to the present authors, when in the course of a CBL
study concerned with roll celas in the mildly heated regime [12] (with
-zi/L, - 2), it was found that results from a vigorously heated reference
run ('Case CA,' with -zi/L. ý 26) agreed reasonably wel with atmo-
spheric and LES data, despite that fact that the small-scide flow was not
fully resolved. The objective of the present work is to further investigate
the importance and nature of small-scales motions in. a vigorously heated
CBL using well-resoived DNS fields. The latter are obtained by increas-
ing lhe number of collocation points, compared to the earlier Case CA
values, and decreasing the Reynolds number, allowing the full range of
scales of both velocity and vorticity to be captured (the small-scale dy-
namics [14] of the stable inversion above the CBL cannot be represented;
cf. [9] and [12]). The fact that both velocity and vorticity (and therefore
helicity) are accuritely resolved is noteworthy, since it has been observed
that helical motions can be especially significant in convective flows [11],
as we sliall illusti'ate below.

2. APPROACH
Numerical soluticns of the pressure-driven turbulent boundary layer

over a heated smooth fiat surface are generated using the Boussinesq
buoyancy approximation. The viscous flow is exposed to a vertical grav-
it- field ana steady system rotation about an axis normal to the sur-
face. At the surface, isothermal no-slip boundary conditions are as-
sumed; an isothermal geostrophic balance is prescribed in the freestream.
The nondimensional parameters for this flow include a Reynolds number
Re - GD/v = G/(v'f/2)'/2 (where G is the geostrophic wind speed, f the
Coriolis parameter, D the laminac Ekmran layer depth, D = (2v/f)1"2 ,
and v the kinematic viscosity); the Prandtl number, Pr = v/K (n is the
kinematic thermal diffusivity); the 'shape factors' of the initial 'A empera-
ture profile (which defiue the inversion height and surface heat flux - see
[121); and (since the flow is not statistically stationary) the nondimen-
sional time, if.

The govening equations [12] are solved using the spectral method of
SpvaaA et a-. [16]. Spatial variations axe represented by Fourier series in
planes parallel to the surface, and in the vertical direction by expansions
in Jacobi polynomials in the mapped coordinate ( = exp(-z/Z), where Z
is the mapping length scale; the time-advance scheme is a mixed implicit..
expiicit second order algorithm. See [16] or [12] for details.
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TABLE 1: Run parameters.

Case Re Pr N. N% LI/zi Zizi MYzi Ax4  (Az/q,,)z

CA 400 0.7 96 45 6.2 0.77 28 13.0 6.7
CC 200 0.7 192 90 5.5 0.68 60 1.9 1.7

Two cases, denoted CA and "B (C for 'convective') have been pre-
viously discussed in [121 (respectiveiy, the vigorously and mildly heated
flows mentioned above). Here we introduce another convection-dominated
simulation, denoted Case CC. Its parxameters differ from CA's in the nu-
merical resolution Reynolds number and initial history. Whereas the
earlier runs were begun by instantaneously superimposing an unstable
surface heat flux and stable capping inversion upon a fully developed (sta-
tistically stationary) unstratified turbulent field and advancing in time,
the present simulation is the result of imposing the same unstable temper
ature field (and small velocity perturbations) upon the laminar Ekman
layer 3olution at the same Reynolds number (Re = 400) using twice the
number of collocation points in each coordinate direction. After a time
of t = 0.11/f, during which the fine-grid flow reached a quasi-equilibrium
state [12], the viscosity was increased by a factor of 4 so that the laminar
depth D was doubled, and both the Reynolds number and the accelera-
tion of gravity (since the Froude number gD/G2 was kept equal to one)
were halved. The resulting Re = 200 histories of the 'surface Pdchaxdson
number' (g/T.)Po/(G/D)" (i.e. surface heat flux) and volume-integrated
turbulent kinetic energy E = fo (uiuý)dz are shown in Figure 1. (In
the above, r0 = (dT/dz),,=o is the surface lapse rate, Tc the freestream
reference temperature at z --+ 00, and the angle brackets denote an aver-
age over horizontal planes.) Towards the end of the run the turbulence is
deemed to be in quasi-equilibrium with the slowing changing mean field.
The symbols in Figure 1 indicate the beginning and end of the 0.04/f
time period from which 24 fields were averaged to obtain Case CC mean
quantities (denoted by overbars); the resulting mean temperature and
velocity profiles are shown in Figure 2.

3. RESULTS
A summary of the Case CA and CC run parameters is given in Table 1.

Included axe the number of streamwise and spanwise (with respect to the
geostrophic wind) and vertical collocation points, NI = N. and N,, the
horizontal domain size, L, = L., and the vertical-mapping length scale,
Z. Note that the lateral grid spacing decreases from Ax+ = Ay+ =
u.,x/v = 13 to 2 in the fine-resolution run (u. is the surface friction
velocity), while the new vertical resolution (which places the first 10 grid
points below z+ = 0.3) increases the number of collocation points between
the surface and the inversion, N,,, from 28 to 60, and decreases the ratio of
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FIGuRE 2. Time-averaged profiles of (a) mean temperature and (b) mean velocity for Case CC.

the vertical gTid spacing to the Kolmogorov length scale at the inversion
from (Az/7)-, = 7 to 2 (q} = (,3/E) 1 / 4 , and e is the dissipation rate of
.IU.]. Given that the lateral domain size remains greater than 5 times

the inversion height, this improvement suggests that both the largest and
smallest spatial scales are accurately captured. More compelling evidence
of the numerical fidelity of the new results is provided in Figure 3, where
one-dimensional energy and enstrophy spectra at various elevations from
runs CA and CC are presented. The Re = 200 spectra show the effect
of low Reynolds number in the small separation between the energy and
enstrophy peaks. They also show that the full range of horizontal velocity
and vorticity variations is c, .)tured in the high-resolution case. Since even
at the inversion the vertical grid spacing is oT the order of the Kolmogorov
length scale, vertical gradients are expected to be accurately represented,
especially near the surface. (At the inversion, however, any small-scale
dynamics that are not precluded by the low Reynolds number cannot be
fully supported.)

Despite having significant energy in the highest resolved wavenumbers
(Figure 3(a),(d)), second-order statistics from Case CA' are not vastly
different from the fully resolved (or experimental) data. As illustrated in
Figure 4, both cases produce realistic heat flux profiles (note the smaller

1A1l Case CA data are from the 'State CAl' field at if = 0.1. [12].
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TABLE 2: Global results.

Case u./G ut/w, 3(deg) 61D -L.16 -z1 /L, w~/zif

A90 0.0652 - 28.5 13.0 0o - -
CA 0.1195 0.249 11.2 23.9 0.0067 26.45 22.50
CC 0.1362 0.235 7.1 13.6 0.0056 31.69 24.18

near-surface maximum and larger interfacial thickness in Case CC, con-
sistent with lower Re). The temperature and velocity fluctuation profiles
from both runs are also reasonable, agreeing fairly well with Deardorif &
Willis' [1] convection tank results.

Global mean quantities are tabulated in Table 2. The inversion height,
zi, the surface friction velocity, u., the angle between the surface shear
stress and geostrophic wind, ,6, the turbulent Ekman depth, , = u,/f,
the convection velocity w, = (gQozi/T0) 1/ 3 (where Q0 is the surface
heat flux), and the Obulkhov length, L, = -u3Too/gICQo) (IC is the von
Karman constant) are given. Values from a DNS study of the unstratified
Re = 400 Ekman layer (Case A90 of [10]) are included for comparison.

The convection-dominated nature of the two heated cases is indicated
by the relatively large (compared to the unstratified values) u,, w, and
-zi/L, (and small 3); Case CC is slightly more vigorous. For both runs
the large rotation-to-convection timescale ratio, w,/zif, implies that the
large convective eddies are relatively unaffected by system rotation.

Another type of 'rotational effect' - that involving rotation of the
convection patterns themselves - appears to be. more significant: the
aligmuent between vorticity and velocity tends to be greater than that
found in non-convective flows [17]. This is illustrated by the probability
density function (PDF) of the relative helicity density h = u. w/lull[w
([15],[17],[18]) at z/zi = 0.2 and 0.5 shown in Figure 5, for the Case CC
low at tf = 0.17. The vorticity-velocity alignment is less pronounced at
other elevations; as z --+ zi it becomes more random, and near the surface
u and w are most often at right angles (cf. [17]). The PDF of relative
fluctuation helicity density h' = u'. w'l/lu'llw'! (not shown) indicates a
slight preference at z = 0.2zi for u' and w' to align, but not to the extent
that the total fields do. At z = 0.5zi, however, the PDF's of h and h'
are fairly similar, which suggests (since the mean vertical velocity and
vorticity axe both zero) that most of the helical motions in the core of
the mixed layer are associated with convective motions. The contours of
vertical velocity w and vertical helicity ww• presented in Figure 6 reveal
that the helical motions are almost exclusively located in the convective
updrafts. This is also apparent in the z = 0.2zi joint vertical velocity-
vorticity PDF, Figure 7, in that large w, (of both signs) is correlated with
large positive w. As the iso-surface plot of vertical helicity in Figure 8
illustrates, the helical convection patterns extend through the depth of
the mixed layer.
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In future work we plan to investigate the dynamics of the 'tornado-like'
convection patterns, to compare them to coherent structures found in LES
studies (such as Schmidt & Schumann's 'spokes' [5]), and to determine if
they are at all related to 'dust devils,' 'water spouts' and 'steam devils'
found in the atmosphere - or perhaps even share some features with large-
scale rotating 'supercell' convective storms [15]. In particular, we would
like to ascertain the soutrce of their vertical vorticity and understand the
role of mean shear in their formation and evolution, and thereby shed
light on the creation mechanisms of related atmospheric phenomena.
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DECAY OF TURBULENCE IN FLUID WITH DENSITY FLUCTUATIONS UNDER THE
STABLE STRATIFICATION

V.M Emelianov, V.A. Frost
Institute for Problem in Mechanics, Russian Academy of Science,

101, prospect Vernadskogo, Moscow, 117526, Russia

Introduction. Turbulent mixing significantly affects various processes in atmosphere
and ocean, chemical reactors. power planits etc.. In most of these cases the effect of buoy-
ancy forces is of profound importance.. The modelling of these processes is very difficult
problem because of effect of buoyancy forces on the turbulent micromixing is not well
understood. On the other hand there are no data. on intensity of turbulent micromixing
when buoyancy forces are significant. At the same time it is the process of turbulent
micromixing that defines the density distribution and hence buoyancy forces. Owing to
turbulent micromixing occur density fluctuations decrease and hence buoyancy forces de-
crease also. Therefore significant interaction of mixing up to the molecular level with
buoyancy forces exists. Because the closed mathematical models for developed turbu-
lence are absent and semi-empirical models are not well developed the main features of
the interaction process between turbulent mixing and buoyancy forces must be studied
experimentally.

One of the most attractive type of laboratory experiment on turbulence is to study
decaying turbulence downstream of a turbulizing grid. A number of experiments on
decaying stratified turbulence have been conducted up to date. The experiments were
carried out in salt-stratified water closed loop chaniels and tow-tanks with stationary
salt-stratified fluid and also in wind-tunnels having thermal stratification. Eich of the
experiments has shortcomings and advantages and there is no ideal type of experiment
on decay of turbulence in stratified fluid. lbr instance the results obtained on the same
experimental set up (Stillinger's closed loop channel [1]) but by different scientists are
directly opposite. The results of [11 show that the decay rate of turbulence in stratified
water is less than decay rate in non-stratified case. Alternatively the experiments carried
out by Itsweiere et al [2] reveal the opposite results. AL; a rule these studies axe carried out
for a linear stratification and for a single value of average flow velocity. In addition these
experiments do not provide a direct determination of micromixing intensity and the effect
of buoyancy forces on the decay of turbulence is described on the base of scvera quahtative

considerations. From this point of view a density discontinuity between two layers of
mixed fluid of different density and having stable density distribution is very interesting
object for studies. This object is a direct analog of atmospheric and oceanic phenomena
and is convenient for developing mathematical models. In addition the increasing of
thickness of interface layer after ceasing all turbulent fluctuations allows us to obtain
integral quantitative features of turbulent mnicromnixing process.

Experimental setup and instruments. The experiments were carried out in the



steel water channel of 50x50 cm cross-section and 3 m length. The channel has two
carriages one of which is provided with a turbulizing grid and the other with measuring
instruments. The carriages are towed along the channel. The side walls of the channel
are provided with optical glasses. The turbulizing grid is made of Plexiglass bars (lxl
cm) and has a mesh size M = 5,0 cm. The channel was filled with two layer fluid: top
layer is fresh water aid bottom layer is salt water. A shadow setup and laser scanning
refractometer axe used for measuring of vertical distribution of density. The intensity of
micromixing is evaluated by measuring difference between initial (before mixing) and flinal
(after all motions ceased ) vertical density distributions of initial So and flial Sj values
of thickness of the intermedia-te layer AS. A hot-film technique with standard DANTEC
quartz-coated wedge-shaped sensors are used for measuring of the velocity fluctuations.
Density difference between two layers Ap, grid velocity U and mesh size M were changed
in experiments to obtain dependencies of integral micrornixing intensity AS and integral
effect of buoyancy forces on these parameters. A Richardson number may be built as a
form of Ri - and then may be rewlit.ten in the form Ii R= , where Mi = A1 M

aand Fr = -2?" This is an integral form of the criteria. In the local torin Mi •k and

Fr = h where It is tur'bulent length scalv aud q2  (v9 ) + (.0n) + (w,). Both criteria
have a clear physical sense. The Mi munber is a ratio of turbulent length scale to thie
stratification length scale. The Fr number is the ratio of kinetic energy which is fed to
the fluid to the potential energy that liquid particles are received displacing at a distance
it.

Experimental results. Measurements of the streamwise component ofa the turbu-
lent kinetic energy are presented in Fig. 1 for zion- stratified awid stratified cases as
a function of the njon-dimensional dista-nce ftrol the grid x/M. In the uniform case the
results obtained follow a power law with -0.8 power exponent. In thle stratified case the
accelerated decay starts at some point, then levels out, and finally steepens aga.iu to the
parallel line to the non- stratified curve.The difference between areas under these curves
characterizes an integral effect of buoyancy forces on decaying turbulence. In addition
the magnitude of micromixing intensity defined as a ratio M-1 as a function of Fr number
U- for different values of Mi number are presented in Fig. 2. The figure shows that for

M-9
small values of Fr number the curves for different Mi number are in coincidence with each
other. As Fr increases the common curve splits into three differ'ent curves for different
values of Mi number at some point. The higher Mi number the higher integral mnicromix-
ing intensity. In addition we have found the two principally different mixing regimes in
our experiments. The first regime is 'usual' one when the thickness of the intermediate
layer increases and the maximum of gradient decreases after passing the grid. This regime
occurred if the nmesh size M of the grid was sufficiently greater than initial effective thick-
ness of the intermediate layer -' < 1. it was a surprise for us when we found that with
increasing of this ratio ( by increasing time delay before towing the grid) sharpening of
the interface and increasing of the maximum gradient occur. This phenomenon can be
explained by more easy mixing in the top and bottom layers owing to that only a small
gradient is presented in the layers after a time delay. In the same time the two-layer
system is still sufficiently strong. In other words it seems that in this case the bottom
and top layers are mixed separately (ea-ch as a whole) and only a small mass exchange
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occurs between the layers. As the result the intermediate layer is sharpened and maximal
gradient increases.

Approbation of the method proposed As the test samples we choose the results
of experimental researches of turbulent decay [3] and the process of changing the turbu-
lence in flow with homlogeneous gradient of the mean velocity (i.e. uniform shear flow)
[4]. For the description of non-isotropic case [3] all fluctuation component equations are
necessary. As in [5] the second niomenit equations in homogeneous conditions with zero
third moments beconew:

at
where S, is the turbulent fluctuamtion intensity, a is the turbulent friction intensity, and
C is the intensity of pilsating forces caused by pressure and friction. The dimension
aa-guinents ([-] = T-1, [e] = L. T-:1)) lead to the next relations [5]:

a = n'o. E11'4; - = CU" E3
/I

2/L, (2)

where E = (S + .•2 -+53) is the turbulent kinetic energy, L is the integral turbulent sca-le,
a0 and ej0 are the dimensionless constants.The integrating of the set (1) was fulfilled with
the second order Runge method with the tume step about 0.0002 sec. or the equivalent
step for axial direction. The best coincidence of calculated and experimental data were
obtained for values (to = 0.75 and sa = 0.30, some different fronm the values obtained in
[5) by the comparison of our equations with equations of sonie two parametric turbulence
models [6] where aYu = 0.45 and Eo = 0.20. The results of energy decay calculations
depicted on Fig. 3.

In [3] turbulent scales themselves ha;ve not. been measured but they can be assessed
from the nieasilrenlents, of turbulent energy dissipation if a l-la.tionship for detcrmiining
of the scale ta-kes the forni:

.E/2 (3)L

The experimental (data for the scale have been approximiated with linear dependance
obtained by least-squares method.

For stationary turbulent uniform slieax flow only one component of velocity differs froni
zero and changes along the transverse coordinate. The shear is called uniform if velocity
is a linear function of the coordinate. In the process of flow rebuilding the integral scale
is changed strongly and, as it will be shown below, our model results in appearance of the
third moments, i.e. the turbulence became non-uniform regardless of initial uniformity
and uniformity of the shear.

Preliminary ana-lysis has been performed for plaine layer and in the absence of gradient
of average pressure and third moments. The last assumption is the sane as the assumption
of uniformity of turbulence. In this case the equations for turbulent intensities are:

. -- (G + b/) Si.ilOX - 2. a. S + c (4)
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For the example in consideration the magnitude of (W' -0) =Siri is the only different
from zero from the others second moments. The equation for 5,13 is:

U(Z). 2-L' -Sin, • OU& OZ -- 2 a .1:3 (5)

The calculations are perform1ed by using the set of equations (4)and (5).The calula-
tions were performed for a given va.lie of sheaxr by Runge-Kutta method with time defined
by a relationship I = X/U(0) and with a. step dlt = 0.00t.

Equilibrium parameters. Soie. possible regimes were tested to assess dependencies
typical for quasi state or statjoniary regimes. If proposed that the turbulent characteristics
reach their stationary values rather ra.pidly, so that values of the parameters are defined
by tie local values of shear and are independent of history, the results obtained call be
called equilibrium. The calculation of equilibrium values wa,; performed using a set of
algebraic. equations deduced with setting to zero of the right hand parts of our set; of
equations wherein spatial lexivatives of second moments are also onjitted. The set of
equaxtions takes the form:

( ,,, ) _', (6 )

= = (Em, + (a,/az" (7)

/L" L Ell(8)
2 , 0r OZ

-- 
(9)- )(E,,) ( )(2 (2 ,- -- a c.,) i0Z

For the cumparisons, data. obtaiiled in the case of uniform shear have been chosen [4].
These data. was recommenled by STANFORD PROGRAM 90/91 . The measurements
have been carried out in wind tunnel d..istreai of turbulizing grid. intensity of tur-
bulent velocity component and turbulent scales were measured for different shears and
meshes of the turbulizing grid.

Preliminaxy calculations show that as opposed to the uniform case if changing of
integral scale does not ta.,ke into account the re,;ults obtained are not in agreement with
experimental da.ta. M\uch beittcr agreemenit vi caiculation with experiment has been found
when anp. experimental dependence is used for integral scale. The best coincidence is
observed when nO = 1.1 and co = 1.1 that somewhat differ from the constants used for
the uniform Case.

Fig.4 shows turbulent energy and intensity of longitudinal component of velocity as
functions of time for typical value of shear. When the shear is minimal (caseL[4]) the
agreement is somewhat worse. Equilibrium values of parameters E, ( and u0' are shown
on the same figures by lashed lines.
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Besides the conditions of our own experiments in water clhannel were modeled. In
this case a set of equations for turbalelnt intensity of velocity and concentration takes the
form:

(
0 QR 0S 34

-- S oCR aa 344

at 2Z 0Z
aS, + (91113

at az
-- 9 - .(y S , + 2 -2 Fr- 3 0Z

8S~4 8CR 8,1334

-& - .. + S34 - 2- S4 Fr ',S.3 - 2c~~t 0Z
where CR is averaged concentratio1, 5"4 = (c") is intensity of concentration fluctu-

atioUs, S34 ('u/c') is turbulent, vertical mass flux, Il is concentration dissipation. The
terms (144 : (w'c=2 ) a.1= (",11'2,1 -a), and a334 = (w'lcL) are th third moments

which are determined by equilibrillul consiQr;atiox,. Factor Fr represents effect of bulk
and pressure forces and is determined l.,y following rela0tionship:

-y - 2. e5/dZ (10)
(a,, + 1h. C1-0.) • h,,)

where g is acceleration of gra-vity, a, and b, are the coefficients in relationship be.-
tweeu concentration and density which can be accepted in this case as the simplest linear
relationship between inverse p and c a.nl has a form:

1
-- • (ZP "+ be, • -

p

Zero boundary conditions ( at the top and at the bottom) were accepted for verticail
and longitudinal componenits of velocity fluctuations and zero derivatives for other vari-
ables. The results of calculations performed for decaying turbulence in thi experimental
water clhannel using this sot of equations are shown on Fig. 5. Two cases are presented
on the figure: one is the non- stratified case and the other is the case with stratification
when salt concentiation of bottom layer wa-s c = 0.4%, The figure siows that as well
as for the mentioned above calculations of decaying homogeneous turbulence in exper-
iments of Lienhard [3] we have acceptahle agreement between the calculations and our
experimental da-ta.. As expected, in the stratification case the curve begins deflect from
non-stratification one at sone. point ard the cadlcala.ting curve satisfactory describes the
experimental data too.
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Fig.1. Relative intensity of longitudinal component of turbulent fluctuations vs. down
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Statistical approach of wave-vortex interactions in stably
stratified homogeneous turbulence
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1 Introduction

The gravity waves generating effect of the acceleration of gravity upon a density stratified fluid can be
found in as various geophysical flows as the atmospheric layer, or in the ocean, where a stable stratification
is found at a given depth, depending on the location and the season. The spectrum, i.e. the repartition
of the energy of internal waves with their wavenumber, can be computed in different manners, and it is
well known that a weakly non linear theory such as that by Garrett and Munk has led to both qualitative
and quantitative agreement with measurements in the ocean [1]. However, a review by Muller ef al.
brought to light the main drawback of such weakly non linear techniques, which is to put aside every
kind of vortical motion, since a "wave turbulence" cannot produce any vorticity [2]. Indeed, interactions
of internal waves with turbulence, and specifically with vortical modes (within a given decomposition
explained below) are shown to produce triadic energy exchanges when a resonance condition is fulfilled.
Therefore, more sophisticated approaches of stably stratified turbulence (SST) are necessary to explain
the apparition of anisotropic tendencies in such flows. Among them, the most important must be the
severe restriction of motion in the direction of the mean density gradient, which suggests a horizontal
layering of the flow with a strong vertical variability. The corresponding velocity field then becomes
almost "two-component" but certainly not "two-dimensional". The importance of this distinction has
appeared recently in order to avoid confusion with the bidimensionalization of flows created by solid body
rotation (SBR) effects in some cases [3], or eventually by an external magnetic field. One can introduce
this distinction in the behavior equations through a "componentality" and a "dimensionality" tensor.
Hence, a quasi two-dimensional flow corresponds to a flow whose vertical variability is greatly reduced,
or in other words, in which the length scale associated with vertical derivatives (8/bxgj) is large. But
the vertical component ull of the velocity does not necessarily go to zero. In the SBR case, dominant
structures are column like. On the contrary, in the case of SST, ull - 0 but not a/Ox1 l. Such vertically
decorrelated structures are stretched in the two horizontal directions and are thin in the vertical one,
suggesting pancakes slipping on one another, or sheet like structures brought to evidence by experiments
in the atmospheric layers [5]. Our approach is to study these anisotropic tendencies in spectral space,
where the identification of energy exchange mechanisms can be detailed. For this purpose, a statistical,
two-point, EDQNM type model is used, rather than Direct Numerical Simulations, since it is based on a
linear wave/vortex deccmposition, and permit us to have a close view of the eight types of energy transfer
arising from this splitting. Statistical approaches of the same kind ha-e been used , in a somewhat simpler
manner by Carnevale and Frederiksen [6], or by Holloway and Hendershot [7].

2 Cverview of the statistical approach

2.1 Behavior equations
For stably stratified turbulence, we consider the Boussinezq equations where the density gradient -y has
its only non zero component in the z3 (vertical or gravity) direction, and leads to a constant Brunt-
Vhisilhi frequency N = (fij-yjg)/ 12 in the whole flow, where g is the gravity, and 6 the thermometric
expanesivity. Moreover, the Prandtl number is assumed to be equal to one. The fluctuating velocity fieldu, the pressure field p, and the perturbation temperature field r around the barotropic equilibrium Etate,
explicitly depend on the location in space x and on the time t at which they are evaluated. We assume

:1 
.



that the turbulence is statistically homogeneous, which allows us to Fourier transform all the quantities,

denoted by a . The spectral equations for the fluctuating quantities are: 4 1

+ vi? £,(k,t) - P~3(k,t)gfi(k, t) = -1k1Pi.(k) (1t1i.) (k, t)

f +v•kj f(k,t)- ya3(k,t) = -Lt,(i6ti)(k,t) (1)

where -y = [I and 12 = -1 and Pij(k) = bj - L is the projector on the plane orthogonal to k. The
fluctuating pressure has been removed from consideration by projection of the equations on the plane
orthogonal to k, since the zero divergence property of the velocity field amounts to kI. u(k, t). One of the
original aspects of the present approach, introduced by Cambon [8], is to gather the fluctuating velocity
and temperature fields under the same vector, using the (now free of velocity component) direction of k
to hold the temperature component of the resulting vector, and a kinematic dimensioning, as follows:

kN
The component on the k direction is complex for the velocity-temperature 6 to be real in physical space.

Because of the orthonormal properties and the scaling coefficient fig/N, ff?4 i = ½.fi* + 1 ( f*jr

simply gives the spt.ral density of total energy (kinetic + potential). The resulting equation for f has
the following shape:

[2--+ vk23] i(k,t)+ Lij(k)0j(JL,t) = Lp+p+q.o Mj,(k,p,q)0,(p,t)O0 (q,t)d 3p (3)

in which we will not give detail for the linear and non linear operators L and M (see [9] for the complete
set, or [10] for a comprehensive approach). The second order and third order spectral tensors can
be computed using the relations: (Oj(p,t)01 (k,i)) = Vi,(k,t)6(k +p) and (=i(k,t)0(p,i)Oj(q,t) =

1 il(k,p, t)6(k+p+q); the resulting equations are easily derived from (3). The classical closure problem in
the spectral formulation of homogeneous turbulence is present here for the 0 variable as well: the equation
for ýi includes non linear terms containing the third order correlations t',, and the equation for the
latter, in turn, include fourth order ones, ... The Eddy Damped Quasi Normal Markovian hypothesis [11]
expresses the fourth order correlations in terms of the second order ones, as for a normal law with a
gaussian distribution, but for a damping proportional to the third order correlations. Symbolically, one
can sum up the whole process as:

< VVVV >=< VV >< VV > -17 < VVV>

where r is the damping. Following previous works [3, 4], the damping is chosen to follow the standard

isotropic rule : ,p(k,t) = vk2 + 71'(k,t) = vk. + A [fo.p2E(p, tdp] where A = 0.366 and E is the
isotropically accumulated kinetic energy spectrum.

2.2 Decomposition on the eigen frame

The eigen modes of the linear operator L1i correspond to the propagating mode of motion on the one
hand, and to the stationary rotational mode on the other. For each propagating mode, associated to the
internal waves in this linear decomposition, two directions of propagation are possible, labeled c = ±1,
while the non propagating mode is labeled using c = 0. The velocity field is then decomposed in terms of
its components on each of the three above modes, and this approach turns out to rejoin the decomposition
of u in the Craya-Herring frame already uscd for axisyrnmmetric turbulence [12, 13]

u• = 0e! + w 2e? ; e'(J) = (k xn i)/Ik x nI ; c(k) = (k x el)/Ik x elI

in which it is necessary to use an auxiliary unit vector which bears the axis of symmetry. For stratified
turbulence, the base vector is chosen to be ni = g/g as shown in figure 1. Such a decomposition can also
be seen in physical space [14] as :

u = Vh x Vn + VW•n + us (4)
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Figure 1: The Craya-Herring frame of reference for axisymmetric turbulence.

for the velocity field, for example, in which the first term in the right hand part contributes to the
horizontal vorticity, with stream function W', and the non divergent contribution comes out of the scalar
potential 4ý. Those two terms contain all the horizontal velocity. The third component u3 comes entirely
out of the temperature field, and plays the same role as the dilatational mode in the classical Helmholtz
decomposition for compressible flows. us is evidently not two dimensional since its associated potential
V" depends on all three components of space. One can see a direct link of this linear decomposision with
quasi-geostrophic turbulence. This latter theory, applied to both rotating and stably stratified flows,
assumes a geostrophic balance of the pressure gradient in the (horizontal or) /3-plane approximation, and
a vertical velocity component coming from a decoupled variation of the motion in horizontal planes [15].
A potential vorticity equation for the geostrophic and Boussinesq approximations can be written as

q = v2,yl+ P-O- 
(5)

h N2 Ox3 (5)

where the rotation is taken into account through tbh Coriolis parameter f. The first term in the right-
hand side of (5) shows the contribution of the stream function V' to the horizontal mode of motion, while
the second one indicates that the vertical velocity plays a significant role in the flow. For low Rossby and
Froude numbers, the statistical models have to rejoin the semi-geostrophic approximation. Indeed, it is
clear that stably stratified turbulence is close to it at very low Froude number, since the vortex eigen
mode component rejoins the horizontal geostrophic motion, which is not the case for SBR turbulence,
even at low Rossby number, since it restricts its larger velocity component to the vertical direction, with
no vertical variability. Thus, one may be able to use the statistical theory with a high stratification to
predict featu. -s of geophysical flows that fall within the range of the quasi-geostrophic theory. In all the
cases, the exact eigeamodes are obtained by single linear combinations of c', e2 , e3 = k/k, so that they
form an orthonormal frame for the new vector 0 [10].

2.3 Energy equations for axisymmetric stratified turbulence

The following equations are obtained for the spectral density of energy ½ < 93'> of the components
03' of the velocity-temperature 

field.

K[a-+ 2,vk 2t(k,=t) T'(k,t)

+ 2vk2 $ 2(k,t) + NainOk*R(k,t) =- T2 (k,t)

-+ 2vk42] 0b3(k,t) - Nsin OGk R(k,t) 7'(k, t) (6)

-+ + 2vkP *R(k,t) - 2N sinOs[0 2 (k,t) - 4s(k,t)] = T*R(k,t)

(7)
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In these equations, the Ok = 1 <l5i95> spectrum is the kinetic energy of the vortex mode, 12 (same

definition) is the kinetic energy of the wave mode, and 03 is the potential energy of the wave mode. The
real part of the 'l spectrum corresponds to the heat flux. Each spectrum, as well as the corresponding
non linear transfer term YT depends on the wave vector k, through its modulus k and its orientation to
the vertical direction Ok. The stratification appears explicitly in the linear operators of these equations
through N, but also within the detailed form of the transfer terms TV, T 2 , T3 , TVR which is not given
here for the sake of of brevity. Each non linear transfer is the sum of the contributions in an eightfold
decomposition according to the values :F1 (wave) or 0 (vortex) of the 'polarity indices' c, e', 0". These
contributions are of the kind

Sfks)S,,,,,(k,p, q,t) dpdq (8)
( k+p+q=o 0' - IN(c sin Ok + c'sin 0; + c" sin 0,)

where the numerator of the integrand involves double correlations and known geometric factors. It is no
wonder that equation (8) contains an expression that resembles,in the limit of low Froude number, the
resonance condition

w,. +WP +wq = 0 (9)

on the pulsations wk = N sin 0k of a triad k, p and q of internal waves, such that

k + p d- q = o (10)

Since we deal with a linear decomposition of the velocity field, the linear eigenncodes that we consider
indeed correspond to internal gravity waves for 1l 1 so that the three Fourier modes that are involved
in the triple correlation tensor lead to the appearance of a phase that includes the surn of the three
pulsations. The triadic condition (10) is given by the convolution product, which comes up to be an
integration over triads of wave vectors only. Therefore, the bottom part of the expression under the
integral in (8), which is the characteristic time introduced by the EDQNM model to damp the S","-
interaction, does not explicitly depend on N for resonant triads only, and leads to a scrambling of the other
triads. We notice that are permitted interactions between wave modes only, but also mixed interactions
with vortex modes c = 0, and finally pure vortex interactions, in which case, since all c's are zero, the
stratification no more explicitly appears. In the next section, within the light of this decomposition, we
compute the detailed energy transfer spectra for the eight kinds of interaction. If we set N = 0, isotropic
turbulence is obtained, for which we also retain the eightfold splitting, and compare them with their
counterparts in a stratified case, in order to see the specific influence of the stable stratificatiou on each
term.

3 Numerical results

The axisymmetric equations for the EDQNM stably stratified model are solved using a discretized wave
space, in which 37 spectral modei are retained, and 19 spectral angles. There are 21 azimuthal angles
that permit the three dimensional triadic interactions. The computations correspond to freely decaying
homogeneous turbulence which is subjected to the effect of gravity at time T = 0. We choose here to
present the resulting energy spectra for one case of stratification, that corresponds to a Brunt-Viisila
frequency equal to 7r, at a time at which the non linear anisotropic trends have become significant.
The actual EDQNM model which is used for the present computations includes the explicit effect of
stratification at all the levels of the closure, i.e. in the non linear terms of both the equations for
the second order and third order spectia. A simplified model, which achieves much lower irreversible
anisotropic tendencies, can be used, in which the equation for the triple correlations retains stratification
in the linear terms only (see vanHaren et aL, present meeting). Explicitly, the most complete EDQNM
model shows that the vortex kinetic energy Qi and the wave total energy 42 + 0a accumulate around
the vertical direction in spectral space, the •polar zone" where cos 0:. = 1.

The computations have been initialized using an analytical isotropic spectrum E(k) for the wave and
vortex kinetic energy spectra : 01 = 02 = E(k)/4•rk'. Moreover, initial potential energy is supposed
to be non zero at T = 0, so that 03 = E(k)/4wk2 also. The purpose of this procedure is to see how
the aaisotropy evolves in the very first stage of the computation under the influence of the non linear
transfer terms alone, in (6). These letter equations show that, if the 02 and $0 are different initially,
the linear operators that include N makes them oscillate immediately, effect that is canceled if they are
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Figure 2: Two ways of representing the spectral distribution] of the vortex kinetic energy 4'a: on a linear
plot with curves depending on the orientation of the wave vector (left) ; on a (k€,k•) representation
(right) (N =r and non dimensional time IT/2?r = 3).
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Figure 3: Same as left part of figure 2 for the spectral distribution of the total wave energy $2 + $3 (the
caption holds for all the plots in this paper).

equal. However, '2 and $3 begin to oscillate somehow, after the non linear terms have built a difference
between them. We do not bother with these temporal oscillations by looking at the spectra of the total
energy of the waves, which is a non oscillating quantity as is 4$1.

3.1 Anisotropic spectra

We show here the anisotropic 4b and $2 + $3 spectra in two different ways : first, a linear plot, with the
different curves corresponding to different directions of the wave vector. The polar zone corresponds to
coo d1 = 1 and the equatorial (horizontal) part to COO = 0. The second representation shows a vertical
plane in spectral space, on which isolines of energy are represented on a (kr,k.) coordinate system. As
seen on figure 2 and 3, the anisotropy is poorly reflected by such a representation, only through a somehow
elliptic shape of the isoenergy areas. Whereas the advantage of the linear plot is to compare directly the
levels of energy at different angles, which clearly shows that the inertial range contains more energy at
the pole than at the equator.

3.2 Transfer spectra

On the contrary, the bidimensional representation gives a good view of the areas from which energy is
removed, and those to which it is given, i.e. it is especially useful when looking at the transfer spectra.
We show on figure 4 the non linear transfer terms occuring in the kI and in the $2 + 03 equations.

The detailed transfers for the eight types of interaction constituting the non linear transfer spectra
give us some insight in the generating mechanisms of anisotropy. As figure 5 shows, the pure vortex

5
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Figure 4: The non linear transfer T' spectrum for Pj at time NT/2r-- 3 for N 7r (left), and T2+3 forthe total wave energy 02 + 0a (right).
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Figure 5: The pure vortex interactions (where e = 0, E' = 0 and e" -0 in (8)) in the two representations(sarne conditions of the computation as previous figures). The isolines are dotted for the areas of negativetransfer, and plain for the areas of positive transfer. It is clearly seen that the energy is transportedtowards the vertical direction of k.

interaction consists only in the advection of vortex energy from the equatorial zone to the polar one.Since this term is not directly affected by the stratification, the shape of this part of the transfer iscompletely recovered in the case of isotropic turbulence, for which the EDQNM model still retains theeightfold splitting. The mixed interaction terms, between waves and vortex, are not presented here sincetheir anisotropic features are not as clear as that of the pure vortex interaction. However, figure 6shows the pure wave term, on which we see that it contributes to the scrambling in wave space, as issuggested by the characteristic time asociated to it in (8). The latter equation shows that, when theresonance condition is not verified for a given triad, the N containing part of the nonlinear transferacts as a scrambling mechanism in spectral space. It cau also be seen that the pure vortex interactionleads to a zero energy transfer exactly at the pole. Therefore, the accumulation of energy due to thevortex interactions around the pole, cannot become a complete bidimensionalisation of the flew at largertimes. The pure wave interaction, in turn, reajusts the scales at which the kinetic energy concentrates,at transports some of it to the vertical direction, but is definitely not sufficient to explaia the collapse ofstably s--atified turbulence. Finally, if the vortex kinetic energy a, cumulates at the pole, the conditionof axisynunetry states that 1 = '&2 in this direction, which also leads to having an accumulation of wavekinetic energy, thus of the total vave energy.
The structure of the flow in physical space is may be caracterized in different ways. For example,figure 7 shows the temporal evolution of the length scales of the horizontal componenL of the velocitywith respect to horizontal and vertical separations. Normally, in freely decaying turbulence, the lengthscales i-crease, as a consequence of the decrease of energy in the flow. It is the case for 11 1. here. But
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Figure 6: The pure wavy interactions (where c 1, c' = 1 and c" = 1 contribute only to the T2 +3
transfer- Patches in the spectral distribution seen on the left do not allow one to identified a specific
mechanism at this point.
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Figure 7: Length scales of the horizonta vclocity component, with r(-epuct to two directions of separation:
111,1 for the horizontal separation and 111,3 for the vertical separation.
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111,3 starts from the same value, which corresponds to our initially isotropic conditinos, and stays roughly
at this level. This behavior indicates that the transfers in the vertical direction are more or less inhibited
by the presence of stratification. The resulting structures of the flow can then be viewed as elongated in
the two horizontal directions, as could be a sphere, flatened on one of its axes. The image of "pancake"
like structures may be a bit rtrong, for the layers in the flow are not totally decorrelated vertically, but
remains anyway a good shortcut for expressing all the above mentioned ideas.

The main conclusion of this work is that the pure vortex interactions are the most important generator
of non linear irreversible anisotropy for stably stratified turbulence. A simplified Reynolds stress tensor
model that may reproduce these non linear tendencies has to account for this kind of interaction, in a
first time.
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INTRODUCTION

Rotation and stable density stratification modify the turbulence dynamics in many
geophysical situations and on a large range of scales. Riley et al. (1981) and Lilly (1983)
have suggested that, in the limit of small Froude numbers, stably- stratified turbulence
could obey a two-dimensional turbulence dynamics. However, the numerical studies
by Herring and M6tais (1989) and Mktais and Herring (1989) have shown that the
horizontal motion dominates in a strongly stably-stratified environment, but the flow
develops a strong vertical variability and reorganizes itself into decoupled horizontal
layers. The shear of the horizontal velocity at the interface between the layers leads to
energy dissipation, and prevents the turbulence from exhibiting the characteristics of
two-dimensional turbulence.

Geophysical observations, laboratory experiments (Hopfinger et al., 1982: Bidokliti
and Tritton 1992) and numerical simulations (Lesieur et al. 1991; Mdtais et al. 1992,
Bartello et .1. 1994) have shawn that a solid-body rotation stabilized the cyclonic eddies
(with vorticity parallel and of the same sign as the solid-body rotation 2C) . Conversely,
anuticyclones are three-dimensionalized for moderate rotation rate and stabilized at high
rotation. Furthermore, as opposed to stratified turbulence, a solid-body rotation when
applied to three-dimensional turbulence generates vertical coherence (see Bartello d
al. 1994): for Rossby numbers close to unity, the three-dimensional flow reorganizes
itself into two-dimensional cyclonic vortices, At a larger rotation rate, two- dimensional
anticyclones also emerge from the initially-isotropic flow. Therefore, stable-stratification
and rotation have antagonistic effects on turbulent flows: horizontal layering of the flow
in one case and emergence of vertical quasi-two.-dimensional rolls in the other one.

We numerically investigate the effects of solid-body rotation on stably-stratified
turbulence: at first with energy injection at small scales arid then in a freely-decaying
situation. Various Rossby, Rt and Froude, F, numbers are considered. The Brihnt-
Vaissiili frequency N is assumed to be constant. The three-dimensional Navier-Stokes
equations within the Boussinesq approximation are simulated and homogeneous turbu-
lence is investigated. In order to reduce the dissipative and diffusive ranges extension,
the Laplacian operator in the viscous term is replaced with an iterated Laplacian (see
Basdevant and Sadourny, 193o): in this study, we hlave enlployed A'. The compu-

tational domain is a cubic periodic box, the resolution is 643 collocation points, and
pseudo-spectral numerical methods are used.

FORCED--_-URBE NCE SIMIULATIONS

Turbulence and Waves

When solid-body rotation and stable density stratification are simultaneously present.
one must find a simpie way of discrimating between the turbulent part of the motion

i: Y-



I
and the component as.,ociatcc w:-u. v_ .-
may use, ihe fact that inertia. r.:t' aa r a t ,A L .c.t- "-. L - "
turbulent conipm-rit of the vetCn .,h , -5 . 0 .• - ; ¼ .r * W ,w -

Thib ca, be done n, the !- .. n-4 . .. ?c : i

Charuey lS'.-1971' grot:rupL :-xrbuencr K'.dr"ea.". -cc- ,'-• -tan

imp'y 'hat the aa*,C ,.asert, r.fla.. " - -,. -- r
of a streauL tunt*:o.on L CLa_.--t :97:

S\ -V - -. i . ,:-.

t Nithe DB.\- aa~A¶rCtrt't~ ~~3horz ow" aI- *he rr-'.: \i. zreur-.,t .... - " '- c,•., . .. zr •R . ..t . - .I

can derive "" T t-p - - -' . . , '
inormaiized- ,ie.,bjr brat> ,a, thrt *A ., .. 'w-nz , .

Ut;i

E' and E' will designate the tw-cowponrn-u tf.he qeoanrupktc kýirti, rI'erk a*.,. Z•.
the geostrophlc available potential enery r.sipetively a.soAxiated to u<. v'G anc t").
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wave density field can be easily derived front:

00_.•' = -(, , = .: 3)

with w 2 = (N 2 k2h + f 2 k2) / (k2 + k2). The facts that the wave field has no potential
vorticity and also that the velocity field is non-divergent lead to:

v2 (02w f &6e" 2 &2w f 892O: (4)
= OzOx N2- P zay H = --- + -2 zOx(

These expressions were previously derived by MUller et al. (1986) and Lelong (1990).
Notice that for f = 0, one recovers the classical decomposition of the horizontal

velocity field into rotational and divergent components. It is equivalent to Craya's (1958)
decomposition, which has been uscd to discriminate between stratified turbulence and
internal gravity waves (Riley et al., 1981; Mdtais and Herring 1989). Subsequently, we
call vortical mode the rotational component of the horizontal velocity field:

.V 0- with Lo, V¢ 5

where w, is the vertical vorticity component.

Numerical Simulations

For the present runs, the flow is forced at small scale: the forcing is random in space
and Markovian in time, and acts on a wavenumber band (k1 j = 10 < k < 12 = kT).
We define kI- = [kB + kT]/2 to be the centroid of the lorcing wavenumber band. These
conditions are analogous to those chosen by Herring and M6tais (1989). The forcing is
three-dimensional and acts equally on the three velocity components u, v, w (no density
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forcing). The intensity of buoyancy and rotation effects will be characterized by a
Froude number Fr, and a Rossby number respectively defined as:

= " R= (6)wD
VN f

where W,, WY and w, are the relative vorticity components, and the angular brackets
stand for a spatial average. 6 anid the mean stratification are both oriented along
the vert'ical directa.n. We here focus on the small Froude number r6gime when the
Rossby number ranges from large (slow rotation) to small (rapid rotation) values. \'Ve
concentrate on the energy transfer from the injection scales to the large scales.

1 --- -s.' 1

k"" S2=2.',N"--4r. a)
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Fig.1. Three-dimensional wavenumber spectrum of the vortical kinetic energy for various
values of 12 and N.

In Figure la, we display, for various cases, the three-dimensional wavenumber spec-
trum of the vortical kinetic energy when the system has reached an equilibtimn. In the
absence of rotation and stratification, for k smaller than the forcing wavenumber the
energy is equipartitioned between the modes: this yields a k2 spectrum. One may notice
that, for k > k;, the spectral shape closely corresponds ' a k-'5 / Kolmogorov energy
cascade. In the non-rotating strongly-stratified case (Q = 0; N = 47r; F,. ;:, 0.2), the vor-
tical energy transfer towards the large scales is more efficient than in the non-stratified
case and the spectrum is shallower than k 2 . The buoyancy effects are still dominant
when a wealc rotation (12 = 2r/10; N/f = 10, R, ;• 1) is imposed: the spectral be-
haviour remains almost unchanged. A complete change is observed for strong rotation
(Q2 = 27r; N/f = 1, RA Z 0.1): the spectrum now follows a k"--/ 3 law for k < kf and
the spectral slope is increased for k > kf.

As pointed out by Cha'ney (1.971), for geostrophic turbulence, both the total en-
ergy, and the potential enstrophy are conserved by the non-linear terms of the equations.
One can write: J0= ]= E(k)dk; D, = j k2 E(k)dkc . (7)



This double conservation property is analogous to two-dimensional turbulence, the dif-
ference being that E(k) is here a three-dimensional spectrum. Furthermore, the energy
possesses three components: two kinetic and one potential. Neiertheless, this constraint
should prevent the energy injected at a wave-number kf from cascading towards larger
k and it should be uniformly transferred to lower wavenumbers along a k-51 3 spectrum
similar to the two-dimensional turbulence energy cascade proposed by Kraichnan (1967).
The numerically observed k-5 /. behav-iour for small k could therefore be a manifesta-
tion of geostrophic turbulence dynamics. This will be confirmed by the subsequently
presented results.

[ k-/ 3  KE,0 ,Kk) a) k
5 /3  b)

S• I0-2I IV- EKt(k)

Et(k) EK-(k)

1o-2 K•E 2,o(k)/ N

i/ ',A

/1 1
i0-4 kI'//K• .... jk to- k'f ]

10 I00 1 10 100

Wavenumber k Wavenumber k

Fig.2. Q = 27r; N = 4r: a) three-dimensional wave-nurnber spectrum of the total kinetic
energy (KEotti) to the analogous spectra for the geostrophic kinetic energy (KE'9 0 = EG. +
EX) and the inertio-gravity wave kinetic energy (KE,,,av) ; b) three-dinensional spectra of
the geostrophy energy components E", E" and E•.

Figure lb is the analogue of Figure la. Here, the vortical kinetic energy spectra of
the isotropic (no rotation, no stratification) aid the strongly-stratified, rapidly-rotating
cases are compared to the one obtained when only fast rotation is applied without any
stratification (SI = 27r; IV = 0). We have checked that the large-scale flow exhibits
quasi-two-dimensional vortices composed of both cyclones and anticyclonles are present.
However, although the flow contains these highly-anisotropic structures, the slope of the
vortical kdnetic energy spectrum for small k remains close to the isotropic k' spectrum
(see Figure ib).

A particular attenition is now given to the strongly-stratified, rapidly-rotating regime.
Due to the nature of the forcing, energy is injected in the inertio-gravity wave as well as
in the geostrophic part of the motion. Figure 2a conmpaxes the three-dimensional wave-
number spectrum of the total kinetic energy (KEoa,,i) to the analogous spectra for tlh
geostrophic kinetic energy (HKE 9 . = Et: + E" ) and the inertio gravity wave kiuct-ic
energy (KE,,, 0 ) constructed with the velocity field ua, vW and iv,,, defined by (6). -)in
to the combined effects of rotation aid stratification, the two kinds of mnotions ar,n ý:(' ,-
regated: the geostrophic energy dcnninatc(n the k-' 5 /' invvrse cacade and reaches t.11.,;,.r



and larger scales. By contrast, the wave energy cascades towards the scales smaller than
the injection scales and is therefore submitted to a strong dissipation. A similar picture
can be drawn for the geostrophic and wave part of the available potential energy.

Charney (1971) concentrated on the potential enstrophy cascade and argued that
the dynamics of quasi-geostrophic flow lead, at small scales, to an equipartition of energy
among the x and y components of the kinetic energy and the available potential energy.
Here, the geostrophy energy is equipartitioned among its three components El, E'
and E&-y over almost the whole spectrum including in the large-scale inverse cascade (see
Figure 2b).

DECAYING-TURBULENCE SIMULATIONS

Decay simulations were then integrated to explore the tendency of the flow to
approach geostrophy. Fully-developed turbulent isotropic initial conditions were used
with the buoyancy field set to zero. The initial Rossby and Froude numbers were unity
with N/f • 0.6. The simulation was integrated for over 200 initial large-scale turnover
times. Over this period R1 and F, decreased by a factor of ten.

In this case, the normal modes of the equations linearized about a state of rest
were used to separate geostrophic from ageostrophic motion. To express the energy
decomposition, it is useful to introdcnce three sets of wavevectors: the barotropic set
Bk = { k I k, = ky = 01, the set with only vertical variability Vk = {kI k, = ky = 0}
and the remaining baroclinic vectors R& = { k I k' + k' 0 0 and k- J 01. If the energy
is

E E Uk= Z (GEk +AAEk) (8)
k 2k

where GEk and AEk represent geostrophic and ageostrophic energy, respectively, then

{i AM¶i2, if k E Rk;
GEk= ]1k122 +Ik1 2 , ifkEBk; (9)

0, if k E Vk,

and f A+) 12 + IA-) 12, fCR;
AEk = IAk12 + Ibki2 /N 2 , if k E Bk; (10)

Uk, if k C Vk,

where
A N2 (k + if k bk PVkNakk = No , (11)

= :ifk2(k +akk 28k : k2wkkbk

k 21/ 2 akkkHký , (12)

Ck is the vertical vorticity, 6k is the horizontal divergence and Uk = (N 2 k2 + f 2k)'1/ 2 /kis the linear wave frequency.

In Figure 3 we present both the geostrophic and ageostrophic contributions to
the energy spectrum. After a few large-scale turnover times a monotonic approach to
quasi-geostrophy was observed, with the geostrophic energy decreasing from its initial
value by a factor of 1.9, while the ageostrophic energy decreased by a factor of 38.9.
As in the forced case, an inverse energy cascade was manifested by a translation ofthe geostrophic-energy spectral maximum to smaller wavenumbers. The large scales

became increasingly barotropic while the vertical vorticity kurtosis grew to 6.4 as quasi
2D coherent vortices began to emerge. These were not as apparent as in the simulations
with initial Ro = i and F, = oo of Bartello et at. (1994), implying considerable
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Fig.3. a) Geostrophic energy specta (reference slopes correspond to -5/3 and -3) and
b) ageostrophic energy spectra (reference slopes correspond to -5/3 and -1) as a function of
time for the rotating-stratified simlation with unit initial Rossby and Froude numbers. Curves
are labbeled with their corresponding times.

disruption of phase coherence by the stratification. By the end of the run the geostrophic
energy spectrum was steeper than k-' in the small scales, while the ageostrophic energy
was much more shallow (k-1).

CONCLUDING REMARKS

We have performed three-dimensional numerical simulations in a cubic domain of
forced and freely-decaying, strongly-stratified, rotating turbulence. These have shown
that, for small Rossby numbers, the largest scales are dominated by upscale-propagating
geostrophic turbulence. In the forced case, even if substantial inertial-gravity wave en-
ergy is injected into the system, the flow exhibits a well defined three-dimensional k- 5 / 3

inverse cascade of geostrophic turbulence, while the wave energy propagates towards the
smallest scales where it is dissipated. Furthermore, as suggested by Charney (1971),
the energy in the inverse cascade is equally partitioned between its three components
(kinetic and potential).

The observed atmospheric mesoscale spectra (see Gage and Nastrom 1986, for a
review) exhibit several features in common with the present numerical results: k-5 /3 in-
verse cascades for both velocity and temperature spectra with equipartitioning between
each of the two components of horizontal and potential energy. These striking similari-
ties lead us to believe that the mesoscale spectra do correspond to geostrophic turbulence
propagating towards the large scales. One can extract a turbulent Rossby number from
the atmospheric spectra presented by Gage and Nastrom (1986), R. = /kE(k)LHf,
where k, E(k) and LH are respectively the wavenumber, energy spectrum and horizontal
wavelength. For LH = 100km, kE(k) -- lm -1 yields R,0  0.1. The Rossby numbers
in the inverse cascade of our rapidly-rotating simulations are of the same order.

As previously noticed by Mdtais and Herring (1989), the presence of stratifica-
tion yields the formation of very strong vertical variability wb: ¾ to C stroy the
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vortices vertical coherence. In the present simulations, the two-dimensionalizing effect
of rapid rotation does not seem to be sufficient to restore this coherence. In stably-
stratified, rotating flows, quasi-two-dimensional organized vorticity structures are only
observed in the presence of a well-defined horizontal density (temperature) front leading
to baroclinic instability.

Fig.4. Cyclonic isovorticity surface resulting from a frontal instability: R& = 1 and Fr =
0.5

This is illustrated on Figure 4 which shows the vorticity generation in baroclinic
flows. On the basis of the three-dimensional Navier-Stokes equations (non-hydrostatic,
Boussinesq flow), we have numerically investigated through direct numerical simulations
the formation of baroclinic eddies. The basic initial state consists in an horizontal
density front associated with an hyperbolic tangent profile. The corresponding mean
velocity profle is a vertically sheared jet satisfying the thermal wind equation. Here,
the Rossby number (R,) and the Froude number (Fr) are respectively based upon the
vertical and horizontal initial vorticity associated with the basic velocity profile. Here,
Ro- 1 and F, = 0.5, with 96 x 96 x 20 grid points. A strong amplification of the
cyclonic vorticity is observed yielding the formation of long-lived quasi-two-dimensional
cyclones. By contrast, the anticyclonic vorticity is quickly dissipated.
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Nonlinear effects in the unsteady, critical withdrawal of a stratified fluid.

By S. R. Clarke1 and J. Imberger,

Department of Environmental Engineering and Centre for Water Research,
The University of Western Australia,

Nedlands, W.A. 6009, Australia.

The evolution of the withdrawal through a line sink of an initially quiescent, stratified
fluid in a semi-infinite, horizontal duct is investigated in the inviscid, nondiffusive limit. A
weakly nonlinear, long-wave formulation of the problem of critical withdrawal is presented,
which is then used to study the critical withdrawal of a two-layer fluid from a sink at the
base of the duct. Solutions for the evolution of the interfacial shear front are presented
and related to the steady solutions for the critical withdrawal of a two-layer fluid,

1 Introduction.

When fluid is withdrawn from a vertically stratified water body it is found that at suff-
ciently low roude numbers the withdrawn fluid comes from a narrow layer adjacent to
the level of the sink. This process, known as selective withdrawal, has widespread appli-
cation in the management of reservoirs. The density stratification of a reservoir typically
consists of a well mixed layer near the surface, a rapid increase in the density over a few
metres in the thermocline and then a more gradual increase in density in the hypolinmion.
To model a complex stratification such as this would be very difficult, and also, of limited
use. Therefore research in this field has concentrated on two alternative models of the
fluid dynamics. In one case the resexvoir is modelled as a two-layer fluid, and in the
alternative case, as a linearly stratified fluid. For the two-layer model it is of interest to
determine whether fluid is withdrawn from the upper layer. In particular the flow rate
at which the upper layer is just drawn down into the sink is required, this is termed the
point of critical withdrawal. For flow rates greater than this uniform withdrawal of the
fluid will occur, while for smaller flow rates selective withdrawal of the lower layer fluid
will occur. Here our interest is with this problem for the withdrawal from a semi-infinite
horizontal duct through a line sink when viscosity and diffusivity are negligible. For a
comprehensive review of the general topic of selective withdrawal the reader is referred to
Imberger & Patterson (1990).

It is now well known that selective withdrawal is established by shear fronts, which
are waves of zero frequency that propagate horizontally away from the sink with the
long-wave speed and leave a permanently modified velocity and density structure in their
wake. For a linearly stratified fluid Pao & Kao (1974) demonstrated that an infinite series
of shear fronts would be generated when the sink was started. These shear fronts were
shown to have permanent vertical form and horizontal form of a slowly dispersing step

1 Present Addiess; Department of Mathematics, Monash University, Clayton, Vic.

3168, Australia.
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function. Pao & Kao (1974) stated that the thickness of the withdrawal layer could be
deduced by noting that the rs'h mode could only propagate into the duct if its long-wave
speed is greater than the average velocity in the duct. The withdrawal layer thickness
will then be equal to the vertical wavelength of the last mode able to propagate into the
duct. For a linearly stratified fluid with constant buoyancy frequency N, the densimetric
Froude number is defined as

F (1)
FNh2'

where q and h are the flow rate per unit width into the sink and the height of the duct
respectively. Therefore the average velocity in the duct is q/h. Defining the withdrawal
layer thickness as hS, it was proposed by Pao & Kao (1974) that as the n" mode has
long-wave speed Nh/nw and vertical wavelength h/n the withdrawal layer thickness will
be

6 :t 7F. (2)

This gives a critical Froude number of F,, = r-', which is in agreement with the steady-
state theory of Yih (1958), who showed that in these circumstances as F -o r-1 uniform
withdrawal will no longer occur. This was confirmed experimentally by Debler (1959)
and using steady-state theories by Kao (1970) and Imberger (1972), who all showed that
for F < x-1 selective withdrawal will occur, where, adjacent to the sink is a region of
potential flow, and immediately upstream of this a constant width withdrawal layer will
form resulting from a balance between inertial and buoyancy forces. This layer will have
thickness

6-(xFIS (3)

Therefore, the argument of Pao & Kao (1974) incorrectly predicts 6. Imberger et al.
(1976) modified this argument by proposing that the n' mode could only propagate into
the duct if its long-wave speed was greater that the average velocity in the withdrawal
layer, q/h6. Using this argument gives the correct steady-state withdrawal thickness (3).

Kau (1976) proposed withdrawal criteria for nonlinear stratifications based on a similar
approach to that used by Pao & Kao (1974). He made the long-wave approximation and
showed that when the sink is started, shear fronts would be generated which will propagate
into the fluid. It was proposed that the withdrawal layer thickness can be deduced from
the wavelength of the last mode with long-wave speed greater than the average velocity in
the duct. As shown above this approach fails for linear stratifications, thus we would not
expect that it could be applied to nonlinear stratificatio' •. However, it should be able to
be used to determine the point of critical withdrawal )r nonlinear stratifications. It is
therefore of interest to apply the criteria of Kao (1976) to the withdrawal a two-layer fluid

thog a line the fluid has ttal dpUt- L, with lowerMlaye h i. The
density of the upper and lower layers are po and po + Ap respectively, thus the reduced
gravity is gj = Ap g/po, where g is the magnitude of gravity. The flow rate per unit
width into the sink is g, therefore we can define the densimetric Froude number based on
the lower layer depth

q2
S 9= (4)

The long-wave speed of the interfacial mode is (g'hzi(1 - zi))i, where z, = h4/h, while
the average velocity in the duct due to the potential flow when the sink is turned on is q/h.
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The point of critical withdrawal will occur when these two velocities are equal, therefore
the critical Froude number at which fluid from the upper layer would be expected to be
just drawn down into the sink is

F ~e 12 Z,

1 (5)

Note that this value is independent of the height of the sink above the base of the duct.
The critical Froude number ranges from F1, = 0 for z1 = 1 to Fl. = 1.41 for z1 = 1 to

Fir - oo for z1 -- 0. These values can be compared against studies of the steady critical
withdrawal of a two-layer fluid through a line sink at the base of the duct, for which limited
results are available. Huber (1960) used approximate methods to show that when z -=
the critical Froude number is F1 , = 1.66, which is in reasonable agreement with (5). When
the upper layer is infinite, or equivalently z1 -ý 0 while hi remains finite, the average
velocity q/h approaches zero. In this limit Hocking (1991a) used an integral equation
approach which suggested that the critical Froude number was F10 = 0.42. This was
supported by experimental evidence from Hocking (1991b) of a value of F1 , = 0.38. The
hypothesis here, is that in this limit (5) fails due to the neglect of nonlinear effects. This
is apparent if it is noted that for a linearly stratified fluid with constant upstream energy
Long (1953) showed that the full nonlinear steady problem reduces to a linear equation
for the perturbation streanfunction. Therefore, the linear model of Pao & Kao (1974) is
able to predict the point of critical withdrawal, since nonlinear effects axe insignificant.
However, for general stratifications nonlinear effects are important and cannot be ignored.

Our intention here is to use weakly nonlinear, long-wave theory to study the effect of
nonlinearity on critical withdrawal. In §2 the appropriate equations are outlined, and in
§3 these axe used to study the specific problem of the critical withdrawal of a two-layer
fluid from a line sink at the base of the duct.

2 Critical withdrawal in the long, weakly nonlinear limit.

It is apparent from the discussion of §1 that the problem of critical withdrawal is
dependent on the behaviour of the first mode, as this is the fastest-propagating mode. If
the first mode can propagate upstream then selective withdrawal will occur, if not, then
uniform withdrawal will occur. The behaviour of this mode will be dependent on the
forcing at the boundary and the potential flow in the interior of the duct. As no other
modes propagate ahead of it, the first mode can be considered in isolation from the other
modes and, also, the upstream flow is uniform over the height of the duct. To examine the
effect of nonlinearity on critical withdrawal we will assume that the first mode is weakly
nonlinear and of long wavelength, which allows the behaviour to be studied analytically.
The limitations of this approach, are that firstly we are restricted to small amplitudes,
and secondly, as the flow in the vicinity of the sink is radial, rather than horizontal,
the solutions will not accurately describe the behaviour in this region. We will refer to
the amplitude near the boundary, however it must be remembered that the solutions are
invalid in this region.

To derive the governing equations for the first mode shear front we consider a two-
dimensional, incompressible, stratified fluid contained in a duct of constant depth h, for
which viscosity and dilfusivity are negligible. A Cartesian co-ordinate system (hx, hz) is
defined, where x is the horizontal direction and z is the vertical direction, with z = 0

3



4being the base of the duct and z = 1 the undisturbed height of the fluid. The undisturbeddensity, p(z), is used to define the buoyancy frequency

N2 " (6)

This, in turn, is used to define the Boussinesq parameter

hN2

g , 
( 7 )

where N is a characteristic value of N. As the fluid is weakly stratified 0 << 1. The
time is defined as N '-t and the undisturbed horizontal velocity of the fluid is NhI. It
has been shown by many xesearchers that weakly nonlinear, long internal waves in this
environment will satisfy the Korteweg-de Vries (KdV) equation. Following Grimohaw
(1984), for waves with amplitude O(e) and horizontal wavelength O(e6/2), where e is a
small parameter, it can be shown that the density p and horizontal velocity u will satisfy

p(x, z, t) = p(z - A(x, t)O(z) + 0(e)), u(x, z, t) m N'h(i& + UA., + 0(oc)), (8)

where U is the long-wave speed in a quiescent fluid, A is the amplitude of the wave and
0 is its permanent vertical stucture. L, the limit fi -* 0, U and ck satisfy the vertical
eigenvalue problem

U2  -+ =0 (9)

with 0=0 on z:0,1.

The amplitude can then be shown to satisfy the KdV equation

At + cA. + rAA. + sAxx = 0, (io)

where c = U + i, U= -- , U=

2 f,,' 0,2d z = 2 foj 0>dz

In critical withdrawal the velocity in the duct is

G=- q -F,

Nh2

where F is the Froude number. In the long, weakly nonlinear limit of this problem the
motion of fluid in the duct will be described by (8)-(10), where A and 0 are respectively
the amplitude and vertical structure of the first mode shear front. However, to fully
describe the behaviour we must define initial and boundary conditions for the shear fronts.
The initial condition throughout the duct and the boundary condition at the semi-infinite
end of the duct are both that the amplitude is zero. The boundary condition at x = 0
is found by considering the velocity at this point. For a continuous stratification the
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eigenvalue problem (9) will have an infinite set of solutions, U,, and 0.. The amplitude
at the boundary, A, can be estimated by assuming that the velocity is the sum of these
modes and the initial flow. At x = 0 the fluid must flow out of a line sink at height

zo, therefore the amplitudes satisfy

RA (-F + . A.U.¢.J = -18(z - zo), (12)

where SQ is the Dirac delta function. Integrating this equation once and using the
orthogonality condition for the modes gives the amplitude of the n"' mode;

A, F FfJ N2(z - H(z - zo))4,,,dz
U,, f N 24dz 0 (13)

where HO is the Heaviside step function. Hence; the initial and boundary conditions for
(10) are

A(x, 0)= 0 > 0,

A(0,t) A, lim A,A, = 0, t > 0, (14)
X-00

3 Critical withdrawal of a two-layer fluid.

We now consider the application of the general formulation for critical withdrawal of
§2 to £hc withdrawal of a two-layer fluid through a line sink at the base of the duct. In
this cae zo = 0 and the thermodzine is at z = z1 , therefore, the buoyuncy frequency is

N 2 =NjV26(z-_ZO. (15)

This is simply the limit as c -+ 0 of the contin-ious stratification

N 2 = .. sech2-ZO (16)

Since only the we-aky non-•-near limit is being considered, the followi-ng resltB will only
be valid for Izo - zil 4Z 1. We will limit our discussion to zl 5 1, however, the upper
Uinit of this is not strictly valid. For the stratification (15) it can be shown that the modal
structure is

{zIil -- Z)l(l -Z-1z) z> zi,z z1,(17)

z z < Z1 ,

and the free long-wave speed is (zx(i - z1))'/2. Thus the long-wave speed is

c = (z)(I- z p)) .- (18)

5I



The nonlinear and dispersive coefficients for the KdV equation are 4
1

r: 3 (1 - 2z,), s = (z (1 - (19)

and the amplitude of the shear front is

A, = -(_ - z), (20)

where F, is defined by (4). Note that this amplitude can also be derived by assuming
that if the shear front can propagate away from the sink, it will adjust the uniform flow
over the height of the duct to a uniform flow over the height of the lower layer, with a
stagnant upper layer. For the two-layer fluid this is a more realistic formulation than the
formulation for a continuous stratification of §2.

The solution of (10) and (14) is primarily dependent on the sign of rAl. For rA1 < 0,
as is the case when z, < 1, the nonlinear effect is negative and solutions have been
presented by Marchant & Smyth (1991). If c > -rA 1 they showed that for large t linear
dispersion will not be important, and therefore, the solution of (10) is well approximated
by the solution to hydraulic approximation to (10) (i.e. the term A. is neglected),
which is

0 > ct,
A= r c (c +rA,)t, < x<ct, (21)

rt (21

rA 1  X < (c + rA1 )t.

When c < 0 Marchant & Smyth (1991) showed that as waves cannot propagate away
from the boundary, the solution will rapidly become steady, and is given by

A = 3C cosech2 (_I) 2 (X + X"), (223)

where (0 4s- i [ + rLC +1 2

c] [ (rAa2 rAl ]

In the range 0 < c < -rA 1 no solution was found, however an approximate solution can
be constructed. Away from the boundary nonlinear dispersion will again dominate for
large t, therefore the solution will be (21), however this will not satisfy the boundary
condition at x = 0, where linear dispersion must be reintroduced. Since (21) is only valid
for large t, we can assume that the solution in the boundary region will be steady. Hence,
we can write

0 x> ct,
A A'(X) + X c (23)

t - - x<ct.

r6 r
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Figure 1" Two solutions of (10) and (14) for c = 3, r = -6, s = 1, A1 , 1 and t 5.
The solid line is the approximate solution given by (23) and (25), while the dashed
line is the numerical solution of the full equations.

Near the boundary this second part of A will be approximately equal to -c/r, in which
case, to leading order, A' satisfies

rA'A' + sA = 0, (24)

with
A'(0) -- Aý + , ire A', A' = 0.

r
This has the solution

A'(x) C9 + (25)
(1 + (-r/12s)2X)2'

where A, +
r

An example of this approximate solution to (10) is shown in figure 1, together with the
equivalent numerical solution of (10). The numerical solution is obtained using the finite-
difference method of Chu et al. (1983). The discrepency between the two solutions at
large x in the region of the front is due to the fact that linear dispersion is ignored away
from the boundary in the approximate solution. As time increases the front propagates
further away from the boundary, and thus for very large t the solution A will consist of
a constant level away from the boundary of height -c/r, with a dispersive solution near
the boundary to match this to the boundary condition.

7
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With the problem of two-layer withdrawal this intez-mediate solution can be thought
of as a partial shear front, as it will modify the uniform upstream flow, but will not le.d
to selective withdrawal from the lower layer. The final solution, which has greater velocity
in the lower layer than the upper layer, we will term partial withdrawal. Therefore, there
are three withdrawal regimes: for c < 0 uniform withdrawal occurs, for 0 < c < -rA 1
partial withdrawal will occur, and for c > -rA1 , when the full shear front can propaga:te
upstream, selective withdrawal will occur. It can be shown that for the geometry being
considered here, partial withdrawal will occur when the Froude number satisfie.

2(i - zil) (1 - Z)2
2(-zit< Fc < (1- 1 )i(26)
3 -4z 1  z

It can be seen that the upper limit for F1 is equal to (5), the value found using the criteria
of Kao (1976). When z1 = - the upper and lower limit are equal and, therefore, the point
of critical withdrawal is F1 ; 1.41, in agreement with Kao (1976). This is due to the fact
that r = 0 and, hence, nonlinear effects are insignificant. When zl --+ 0 the lower limit,
which is the point of critical withdrawal, is F1 = 2, which is now in reasonable agreement
with the results of Hocking (1991a,b).
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DENSITY INTRUSIONS WITH LARGE RELATIVE MLL-CKNESS
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Ababre

Previous analyses of density intrusions indicate that only relatively thin
intrusions are allowed in order to satisfy a momentum balance at the currer.t head.
These constraints can be relaxed somewhat by various modifications to the basic
theory, but are inconsistent with experimental observations indicating intrasions
that occupy nearly the entire flow depth can be produced. An alternate theory of
density current propagation does not possess these restrictions on intrusion layer
thickness and provides a more satisfactory explanation of experimental
observations. New experimental results are presented to corroborate this
interpretation.

The propagation of density intrusions has been previously analyzed with a
variety of one-dimensional analyses which predict the propagation velocity as a
function of the layer thickness and density difference. Most are based on the work of
Benjamin (1968), who formulated a momentum balance in a frame of reference
moving with the front. He showed that energy dissipation must generally be
present at the density current head and assumed that it was confined to the
continuous layer above the density current. Benjamin also showed that the
requirement for no energy gain in the direction of the flow limited the intrusion
thickness to i o morre than one-half the total flow depth. He also suggested a more
restrictive criterion that the relative thickness could not exceed 0.347; this was later
shown by Kranenburl; (1978) as a necessary condition for maintenance of the
discontinuity (shock) at the density current front. Wright (1986) observed density
currents with thicknesses considerably in excess of either one of these limits. The
analysis by Kranenburg (1978) also considered the possibility of energy loss within
the density current bead; this allows for a greater intrusion thickness while still
retaining the requirement for maintenance of the shock. Wright, et al (1990)
showed that a large variation in Kranenburg's energy loss coefficient is necessary to
explain experimental observations. Subsequently, Kranenburg (1993) proposed a
revision to his original model and suggested that a constant loss coefficient would be
adequate to describe most observations. It can be shown that Kranenburg's revised
model also requires a nonconstant loss coefficient both for the original experiments
by Wright (1986) and in additional experiments conducted since that time. It is also
found that the condition for maintenance of the shock does not hold for some of the
recent experimental results. These results are, however, consistent with the
minimum energy model proposed by Wright, et al (1990).
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Exper t Resus

Most previous studies have ouly reportad visual layer thicknesses and
observed front speeds. The present experiment*l rosulti include measurement of
the vertical density profile behind the current head in addition to observed frontal
speeds. Figure 1 presents a general schematic of a density current. Uf is the front
speed, hI is the intrusion thickness behind the curren, head and H is the total depth.
Velocities relative to the current head are required sice previous models analyze
the flow in a frame of reference moving with the intrusioa. C1 is the approach
velocity when the current head is brought to rest, wbi>F 0 2 is the upper layer velocity
in the same frame of reference. From Fig. 1, Ci= Uf - aIH and C2 = Uf - q2 h2 with q
= qj + q2, ql the intrusion discharge, and q2 the flow in the continuous layer above
the intnrsion (positive if in the same direction as thne doubity current). Additional
parameters used in the discussion below are the discharge ratio qr = q2/ql and the
relative intrusion thickness q = h i/H. The following defnitions for the layer
properties are made from the measured experimental data:

H

g'h = fg A--dy (1)
0 0H

IIIh12 y= (2)

qj = Uf hi (3)

q2= q-ql (4)

Here Ap is the density difference between the intruding and ambient fluids and y is
distance from the boundary along which the intrusion propagates.

q 2 / h 2

p~ f~

Figure 1. Schematic of Density Current.

Experimental results for density currents were presented by Wright (1986) for
both counter-flows (q, < 0) and co-flows (qr > 0). This investigation focused on mixing
in dense, horizontal discharges and the density currents resulted from initiation of
the dense discharge along the horizontal channel bottom. The density excess was
created by chilling salt water; racks of thermistor probes at selected locations along
the channel provided continuous records of vertical density distribution with time.
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The channel configuration involved an overflow weir at the downstream end to
maintain a constant depth so there was a net throughflow in all experiments.
However, the mixing in the source discharge produced an upstream flow in the
ambient fluid to satisfy the entrainment demand. Later experiments included an
ambient fluid flow created with a recirculating pump; the near source mixing still
resulted in a net upstream flow in many of these experiments. The experimental
design did not allow for large variations in qr but many of these experiments
involved quite large values of %up to a maximum of 0.8.

Upon analysis of this original set of data, it became clear that more useful
results could be obtained by minimizing the near-source mixing and varying qr over
a wider range. An additional series of experiments were performed with salt water
intrusions in a 10 m long flume equipped with a pump to circulate the fluid in the
upper layer. An overflow weir at one end of the flume was used to control the water
level. By locating the salt water discharge at one or the other end of the flume, both
co-flows or counter-flows could be established. The qr ratio could be easily controlled
with this experimental configuration. Zero recirculating pump discharge resulted
in the commonly studied cases of starting flow (qr = 0) and lock exchange flow (qr =
-1) with the discharge gate at the opposite or same end of the channel as the
overflow weir. Density profiles were measured approximately 1 m behind the
density current head at a location 4-5 meters downstream from the discharge gate;
there the density current was well defined and the influence of the large starting
vortex formed as the flow was initiated was no longer apparent. Results from these
experiments were previously reported by Wright, et al (1990). In general, it was
difficult to produce large values of '1 with this experimental configuration.

A final set of experiments similar to these is now underway in which the
discharge gate has been modified in an attempt to produce larger values of q1.
Preliminary results have been obtained for starting and lock exchange flows with
future experiments to be performed with the recirculating pump in order to vary qr
over a wider range. It has still been difficult to produce large density current
thicknesses without also allowing near source mixing, so future experiments may
also require this additional modification.

Kranenburg's (1978) modification of Benjamin's (1968) analysis gives the
density current speed as a function of the fractional layer thickness as

SC,(-l)2• (5)
NF'-H 1+,q + k(1 - "q)

where k is a loss coefficient estimated by Kranenburg to have a magniutude of 0.6.
Eq. (5) is derived from a momentum balance in the relative frame of reference
moving with the current head and with the assumption that the nose of the density
current at the chainnel bottom is a stagnation point. It also requires the assumption
that energy dissipation at the density current head within the intruding layer is
given by kpC 12/2. Kranenburg (1993) modified the dissipation term by adding an
additional term which he deduced to take the form

2 =(k C 1
2 + (l+k)C 1 1) (6)
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so long as the boundary layer effects for flow over the boundary along which the
intrusion propagates can be neglected. Regardless of which expression is used, the
effect is to predict a slower, thicker density current for a given source condition.
This is consistent with experimental observations in that Benamin's analysis
predicts larger than observed propagation velocities for miscible intrusions.

In order to completely analyze density current propagation, Kim and Wright
(1987) attempted to define limits on physically admissible solutions; an example is
the constraint by Benjamin (1968) that the requirement of no energy gain in the
direction of flow limits solutions to i1 q 0.5. Kranenburg (1978) developed a criterion
that requires the flow in the layer above the density current to be subcritical, or at
most critical with respect to the density current itself:

C22 (U, - U2) 2  (7)
g'h2 = g'h2

Eq. (7) is necessary in order to maintain a sharp intrusion front. Benjamin's
solution, Eq. (6) with k = 0, satisfies Eq. (7) so long as -q is less than 0.347. Choosing
a positive value for k in either Eq. (5) or (6) results in a larger admissible value of q1.
However, Wright (1986) showed that steady density currents with ql far in excess of
0.347 could be produced (a m um value of 0.8 was obtained in those experiments
and this was apparently only limited by the experimental conditions selected).
Kranenburg (1993) suggested a value for the loss coefficient k of 0.6 and presented a
comparison with the data from Wright (1986) to partially justify this choice.
However, the manner in which the comparison was made was misleading in that
his resulting expression for CI was used to solve for the intrusion thickness il while
substituting observed intrusion thicknesses for some terms in the solution. Leaving
the intrusion thickness as a computed variable in all terms results in much less
satisfactory agreement between observed and predicted layer thicknesses. Solving
Kranenburg's expression for individual values of k for each experiment (using
observed front velocities and layer thicknesses) resulted in one value in excess of 100
for an experiment that was considered to be verification of the analysis; several
other experiments indicate k values an order of magnitude greater than 0.6. A
presentation of the k values estimated from Eq. (5) for the data of Wright, et al (1990)
is presented in Fig. 2 as a function of qr while the k values considering the energy
loss as given by Eq. (6) are presented in Fig. 3. This large and apparently systematic
variation in the loss coefficient raises the possibility that either an alternate
expression for the energy loss is required or that the density current propagation is
controlled by some other principle.

These approaches fail to adequately describe the observed density current
propagation for cases of relatively strong co-flow as experimental observations
"AdAia that density citzente propagate much more slowly than predicted by
Benjamin's theory and a large loss coefficient is necessary to describe the
experimental results, Also, large TI experiments tend to require larger loss
coefficients. This finding led Wright, et al (1987) to forsake the momentum balance
at the density current head and to suggest that the density current propagation
velocity is constrained to be no greater than the long wave speed of an interfacial
disturbance, The notion behind this concept requires that energy dissipation at the
current head adjusts to the level necessary to satisfy this condition, in which case
the loss coefficient must vary consistently with qr and il. However further
investigation for the strong co-flow results indicated that the density currents were
supercriLical in an absolute frame of reference although not nearly as much as
required by Eq. (5) or the equivalent modification utilizing Eq. (6). This observation
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led to an alternate derivation of a "critical" flow state by minimizin the total energy
flux in the two layer flow subject to the requirement that the total depth remain
constant across the intrusion front (Wright, et al, 1990). In terms of the density
current propagation speed Ci, this analysis yields

S[l - ( + qr)i] ( - ¶i)3  r313 (8)

Eq. (8) has been found to describe experimental results for intrusions in miscible
fluids and has the advantage that no empirical coefficients are required to fit
observations. In particular, the need for a highly variable loss coefficient as
indicated in Figs. 2 and 3 is obviated. Wright (1986) suggested that Eq. (7) could be
applied as a general constraint without regard to the application of the momentum
balance. Eq. (7) (satisfying the equality) can be rewritten in terms of C, as

- - (1-1)3 (9)

Wright, et al (1990) suggested that whichever of Eqs. (5), (8), or (9) predicts the most
severe constraint on density current propagation (i.e. the slowest propagation speed)
would prescribe the intrusion characteristics. However, the data from Wright
(1986), particularly for co-flows and large nj appear to contradict this assumption.
There is, however, considerable scatter in the experimental results and this led to
the current round of experimentation in an attempt to resolve this issue.

Experimental Rmdks

Initial data were collected in a starting flow (qr = 0) configuration with
an attempt to collect data that be constrained by Eq. (9). Kranenburg (1993)
suggested that density currents with a thickness greater than that prescribed by Eq.
(9) would be unsteady and subsequently collapse to a smaller il in order to attain a
steady frontal condition. However, this was not observed in the experiments and the
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Figure 2. Loss coefficient vs. qr for Kranenburg's (1978) model computed from data
from Wright, et al (1990).
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Figure 3. Loss coefficient vs. qr for Krax.enburgs (1993) model computed from data
from Wright, et al (1990).

ropagation conditions were more or less constant along the length of the channel.
density currents are subject to bottom and intorfacial shear and thus slow down

as they propagate along a horizontal channel. Although this effect is relatively
small, it does complicate the interpretation of whether a density current would be
steady in the absence of shear effects. However, the presentation of distance vs. time
observations in Fig. 4 for typical intrusions that are supposedly constrained by Eq.
(9) compared to those that are not indicates that the two situations are not
discernibly different with regard to the unsteadiness of the flow.

Another way of examining the results is in terms of the non-dimesional
propagation velocity C 1/Ng--. The predictions of Eqs. (5) (with k -0), (8), and (9)
are presented in Fig. 5 along with the data from Wright, et al (1990) and the current
experimental results for both qr = 0 and -1. Using the definitions of ql And q2 in
Eqs. (3) and (4) makes the starting flow qr values slightly less than zero and not the
same in all experiments while the lock e=change flow data are for qr exactly equal
to -1 with this definition. These results indicate that the density current propagation
speed is not independent of the ambient velocity as required by Eq. (5). Although the
expression of the energy loss by Eq. (6) makes C1 dependent on the ambient velocity,
the presentation in Fig. 3 indicates that a variable loss coefficient is required to
describe the experimental results. Te en lCted by Eq. (o0 are- uite
well indicated by these data, especially considering the uncertainties introduced by
the non-uniform velocity and density profiles. An additional finding from the
present experiments is that Eq. (9) apparently does not provide a constraint on
density current propagation as initially hypothesized. This conclusion is
preliminary due to the limited range of experimental conditions investigated, but
the expeximental results do follow the predictions of Eq. (8) beyond the limits of 1
imposed by Eq. (9). A similar conclusion was obtained by Wright and Paez-
Rivadeneira (1994) in a re-anplysis of the data by Wright (1986). That interpretation,
however, was hampered by W.e scatter in that data set. The current data are for a
much more limited range of qr and il values but are for more carefully controlled
discharge conditions.

-t
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Figure 4. Typical density current propagation histories for starting flows: a.) 11

greater than Eq. (9) prediction; b.) -q less than Eq. (9) prediction.
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Figure 5. Experimental data for non-dimensional density current propagation
speed compared to various analyses.

The data in Fig. 5 do indicate that Eq. (5) may be valid when it predicts a
slower propagation speed than Eq. (9). This is reasonable since the faster
propagation speeds predicted by Eq. (9) would require a negative loss coefficient or

an enrgy ain at the intrusion front. Sines this would not be physically possible, it
appears that Eq. (5), possibly with a small loss coefficient should describe the density
current propagation. Because of some uncertainties in the experiments of Wright,

- - M-
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et al (1990), additional experiments will be performed for strong counter-flows to
more clearly delineate this issue.

Cond3udos

The experimental results presented in this paper serve to confirm that
Benjamin's (1968) momentum balance is not generally a useful model for analyzing
density current propagation. In particular, density currents with thickness in
excess of the limits proposed by Benjamin can be created. Although Benjamin's
analysis can be modified by consideration of energy dissipation at the density
current head, this formulation requires a variable loss coefficient in order to
reproduce experimental results. Also, the constraint on the maximum intrusion
thickness suggested by Kranenburg (1978) appears not to govern density current
propagation for moderate co-flows and counter-flows. On the other hand, a
formulation based on minimum energy prinmples describes the present as well as
previous experimental results. The only exception appears to be for strong counter-
flows in which Benjamin's momentum balance prescribes a slow propagation
velocity than the minimum energy formulation. Additional experimentation is
underway to more thoroughly investigate this issue.
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Abstract

The experimental and numerical analyses of flow development caused by the in-
jection and withdrawal of multiple fluid layers in a stratified environment are
presented. The injection of positively, neutral and negatively buoyant fluid lay-
ers was studied experimentally and an analytical approach was developed which
considers temperature-stratified, salinity-stratified and doubly-stratified environ-
ments. A comparison of experimental and numerical data ahowed good agreement.
The present experimental and numerical analyses demonstrate the feasibility of
injecting and withdrawing several buoyant layers while preserving stable density
stratification in a double-diffusion environment, such as would be found in a solar
pond.

1. Introduction

Laminar or transitional (from laminar to turbulent) jets have not been investigated
widely because flows inside and around a jet are usually turbulent. However, in
a few particular cases laminar flow is needed in order to provide desirable flow
conditions and maintain ambient fluid stratification (e.g., Kaghazchi, 1988). One
particular application is the injection of a laminar jet or system of laminar jets
as proposed for advanced solar pond (ASP) teclnology (e.g. Osdor, 1984; Rubin
and Uremporad, 1989) in order to increuse solar pond eficiency. Creation and
maintenance of a so-called stratified flowing layer (SFL) in the bottom part of
the solar pond gradient zone requires the simultaneous injection of several flowing
layers of different temperature and salinity.

Only a few experimental studies are available on laminar jet injection and these are
concerned with a salinity stratified environment (Manins, 1976; Maxworthy, 1972).
Flow visualization from these studies shows that jets with moderate Reynolds
numbers (Re = Ud/v) propagate without significant vertical spreading, which is
obviously suppressed by the stratification. Therefore, ambient fluid entrainment



into the jet body is low and molecular diffusion is the basic phenomenon which
characterizes the transport of properties across the jet boundary. Tests were not
conducted for temperature or double-diffusive (D-D) stratification. In particular,
the SFL of an ASP has "diffusive" D-D stratification and phenomena associated
with this condition should be considered. In addition, the injection and simultane-
ous withdrawal of a system of laminar layers has not been investigated sufficiently
and it is not clear a priori how this type of system should operate.

In the present research an experimental study was conducted to evaluate the be-
havior of a laminar two-dimensional horizontal jet or syst em of several jets. It
was desired to determine the influence of buoyancy force, double-diffusive effects
and simultaneous operation of (horizontal) injection and withdrawal procedures
on jet flow in single (temperature or salinity) and D-D stratified environments. A
numerical model based on a Lagrangian approach was also developed and tested
in order to simulate the propagation of the jet front. Some results from this study,
particularly related to single jets, are described by Priven (1993) and Priven et
al. (1994a, 1994b). Results relevant to the present paper may be summarized as
follows:
a) a stable flowing laminar neutrally buoyant (with respect to ambient strati-
fication at the injection/withdrawal level) layer can be created and maintained
without significant mixing between the layer and ambient fluid;
b) any difference between injected and ambient fluid properties (at the injection
level) leads to vertical movement of the jet, causing flow to the withdrawal port
to be limited to a relatively restricted region above and below its location; as a
result, the thickness of the jet increases due to mixing with surrounding fluid and
ambient stratification may be affected;
c) horizontal injection of a neutrally buoyant D-D jet into a D-D stratified envi-
ronment will exhibit vertical motion unless the jet properties are the same as the
corresponding properties of the surrounding fluid; the jet deviation (from horizon-
tal) in this case has a double-diffusive nature and depends on the magnitude of
the salinity or temperature deficit; and
d) the Lagrangian approach provides a simple and effective means for calculating
jet trajectory.

The present study extends the analyses of Priven et al. (1994a, 1994b) to exam-
ine multiple layer injection. The single-jet results indicated that the withdrawal
procedure was a critical factor in determining resulting flow patterns. This was
particularly true for D-D jets. In the present study multiple laminar jet injection
into a salinity-stratified environment is examined. Flow observations are reported
in Section 3 and the applicability of the numerical model to the multi-injection
system is discussed in Section 4.
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2. Experimental Set-up and Procedure

The laboratory set-up consisted of a flume whose length, width and depth were
320 cm, 60 cm and 100 crm, respectively. The entrance unit contained a series
of outlet ports, or slots. Each slot was 56.0 cm wide and 2.0 cm high, and flows
to each slot were monitored with a system of flowmeters. The main withdrawal
port, 6.0 em high aud with the same width as the entrance slots, was positioned
at the downstream end of the flume. The vertical dimensions of the outlets were
calculated on the basis of Imberger's (1972) experimental study of two-dimensional
sink flow. The system was operated in such a way that the the total outlet flow
was always equal to the total inlet flow.

A linear ambient gradient was set up by slowly filling the tank in a series of
thin layers in which different salinities (and temperatures, if a D-D gradient was
desired) were determined by controlling the discharges from tanks with different
concentrations (and temperatures). Density gradients were measured by slowly
withdrawing fluid samples at a given height and measuring specific gravity with a
hydrometer. The experimental uncertainty in the density measurements was 1.0
kgm-3 . The injection and filling discharges were measured by flowmeters with
an estimated accuracy of 2%. Temperature profiles were measured by using 16
thermocouples fastened on a fiberglass bar and connected to a data logging unit.
Calibration of temperature measurement showed that the expected accuracy is ±
0.3°C. Further details of the experimental set-up and procedures may be found
in Priven (1993).

3. Experimental Observation

For purposes of illustration of the essential features of the observed flows, two
representative tests are chosen, termed MJS2 and MJS3. Table 1 presents the
main characteristics for each of these experiments. In this Table Ap = pcj - Pj
(kgm- 3 ) is the difference for each sublayer between the injected fluid density (py)
and the density of the ambient fluid at the injection level (p,j), Gp (kgm- 4 ) is
the density gradient, vi (crnsec-') is the injection velocity for each sublayer, P'r
and Re are the Froude and the Reynolds numbers for each sublayer, respectively.

Experiment MJS2 was characterized by injection of two neutrally buoyant fluid
layers (1 and 3), with equal flowrates. The injection was performed from the upper
and the lower slots; no fluid was discharged through the middle slot. Figure la
illustrates the propagation of both jets with time. Initially the two fluid layers
flowed with the same velocity, and propagated into the tank at the same distance.
Later, the upper fluid layer accelerated and started to move more rapidly than
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Runi Layer Ap Gp Vj Fr Re
M.JS2 1 0.0 71.4 0.4 -- 100

________ 3 0.0 ______ 0.4 -100

MJS3 1 0.0 84.0 0.5 -125

2 - 1- 
i - - :3 -0.1 0.6 0.4 150

Table 1: fluid layer and ambient fluid properties
the lower layer. This acceleration was accompanied with a corresponding decrease
in thickriess (about 2 cm, compared with about 4 cm for the lower "slug"), as deter-
mined fioni photographs of the flow. Therefcre, although both fluid layers were in-
jected into the same btratifled environment with the same velocities, both with neu-
tral buoyancy, the characteristics of the fluid propagation for the two jets were dif-
fexrent. T'his behavior is assumed to be a direct result of the selective nature of the
withdrawal procedure.

Uppor jet p et

IOU10 100

T,- Maxworthy data 2 -- Maxworthy data
Z"O G u -0.40 cm/sec e A u =0.50 cm/sec

10 . - v

to 100 1000 10 100 1000

Elapsed time (sec) Elapsed time (sec)

Fig. 1. Slug length versus elapsed time for MJS experiments, a) IMS20: b) MJS3

Similar results are shown in Figure lb for experiment MJS3, where the velocity of
the upper fluid layer was kept smaller than the velocity of the lower layer (0.5 cm/S
and 0.6 cm/s, respectively). Fluid was discharged in the same manner as in the
previous experiment. The upper layer had neutral buoyancy, while the lower
layer density was some-what smaller than the amnbient density; this modification
was introduced to force the jets to flow parallel and as close to each other as
possible. Both figures show the developmeut of slug length consistent with a result
by Maxworthy (1972), which correlates laminar slug length with time as I 1 '6
Our experiments show that this prediction is COiTect at least in the region where
jet flow is not infiuznced by the end wall and withdrawal port. After that point
the slug propagation is slower. Figure 2a shows flow visualization for experiment

4
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Fig. 2. Flow visualization for experiment MJS3. a) dye trace movement during
injection (region close to the entrance unit); b) jets dose to the withdrawal port.

MJS3 in the region close to the entrance port. Here, two sharp velocity profiles
indicate that the layers were not mixed. From Figure 2b it is apparent that the
jets flow without any mixing at the region close to the withdrawal port (at right
edge of photo). As in the previous experimentai ran, after about 83.0 seconds
the lower layer has moved about 100.0 cm, while the upper layer has moved about
80.0 cm (see Fig. 1b). It may be intcresting to note that the thickniess of the upper
layer was about 2.0 cm, while the lower layer thickness changed from 2.0 cm at .he
injection to about 3.0 cm at the end of the injection process. Comparison with the
experiments for single jet injection and withdrawal indicates that the upper layer
essentially behaved as a neutrally buoyant fluid injection (P.iven et al., 1994b).
Instead, the lower layer behaved like a fluid layer of negative buoyancy which could
not leave the tank and as a result its thickness increased. Therefore, even if the
upper layer had a lower initial velocity, it accelerated and this may be explained
by existing conditions at the withdrawal port.

4. Numerical Model

A mathematical model was developed earlier (Priven, (1993), Priven et al., (1994a))
to analyze the general behavior of a low Re, two-dimensinual buoyant jet in a strat-

iflied water body. The model routes the injected fluid lcayer through the domain
of interest by solving, in a local reference frame, the equations of conservation of
mass flux, momentum flux, beat and salinity flux. The model assumes pressure
variations from hydrostatic to be negligible, and includes entrainment, diffusion
and dissipation terms. In this framework the equations expressing conservation of
mass flux, momentum flux, heat and salinity fluxes are:
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I4

mass (continuity)
d

7-(eodivI) =2ao 4 lvl 1

momentum rIV

d [,dlvlv.] = - 2 LCD IV1"Ip-(a-)

~EdC ,dvlv,1 = ~-2eCD FvIT~ + Lp d g 2PLa

heat and solute transport

d (pdjv IT) = 2aeo.JvlT. -29 XT (T - T.)

p d

(c aC -Cd (3a -b)d a(sdnvC) = 2ae.(jvJC) - 2Qao.1c ( )
'TC d

were ( is the axis of the local reference system, kT and ks are the thermal and
solute diffusivities, p is density, d is jet thickness, a is an entrainment coefficient.
The set of equations (1-3) is completed by the following equation of state:

p(T, C) = oo[I - #T(T - T0) + fc(C - Co)] (4)

wheie OT and #c are the thermal and solutal expansion coefficients, respectively,
and subscript , refers to a reference state. Eqs. (1-3), together with eq. (4),
represent a nonlinear system of six equations in the six unknowns 0, v,, v., d, T
and C. The fluid layer is discharged at vertical position Yj, with jet width dj, initial
velocity vj, temperature Tj and solute concentration Cp. The fluid is injected
into an ambient environment with linear temperature and solute concentration
gradients GT and Gc, respectively.

The nunerical model was validated with results obtained from experiments on
single laminar jet injections into temperature, salinity or D-D stratified environ-
ments. Comparison of numerical and experimental results demonstrated the ca-
pability of the numerical model to corectiy simulate the jet trajectory (Priven,
1993). However this model does not simulate an ambient flow. Figure 3 shows4<. the jet trajectory and density development for an initially nonbuoyant jet injected

into D-D stratified environment. The injected fluid had lower temperature and
salinity concentration than the ambient fluid, though the jet was initially at the
same density as the ambient environment. Therefore, entrainment should not

be important immediately after injection, however, some vertical deviation is ex-
pected due to diffusive effects. As seen in Figure 3a, the jet starts to deviate
at a distance of about 1.0 m and at the same distance density decreased due to
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heat flux across the jet boundary. At a distance of 100.0 rn the jet trajectory and
density variations were stabilized. In the case of a system of layers turbulent mix-
ing between the layers should not occur except perhaps in the region close to the
injection slot, where momentum flux is important. Downstream, only D-D effects
should influence the jet flow. Therefore, it is suggested that in the case of initially
nonbuoyant jets the current model developed for single discharges may be used

to simulate the system of multiple injection by simply running the model concur-
rently for each jet. Several simulations of this type have been run for three parallel
neutrally buoyant jets, but further work is needed to investigate buoyancy effect.

U 2 0 ......... - -- ---

to

1005 -I

E ....... .. t ..... ... . ....

0.1 1.0 10.0 100.0 1000.0 10000.0

Distance (cM)

Fig. 3. Numerical simulation of initially nonbuoyanut laminar D-D jet injected
into D-D stratified environment, a) Jet trajectory; b) density variation

5. Conclusions

The experiments have shown that a system of multiple laminar flowing fluid layers
can be created and maintained in a stratified environment without significant
mixing between the layers. Some mixing may be expected near the entrance when
the injected fluid is not at the same density as the ambient fluid, due to buoyancy.

In the case of double-diffusive stratification some vertical movement and mixing
is expected at some distance d. wnstream of the entrance, due primarily to the
relatively fast diffusion of heat. The initial propagation of the injected layers
follows t016, as first suggested by Maxworthy (1972). However, the propagation
speed decreases as the flow approaches the far wall and here, the specific location
of the withdrawal slot has an important effect on the downstream flow patterns.

It was found that the flow pattern of the multiple injection system was basically

similar to that of single layer injection. Therefore, the numerical model developed
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for single jets, based on the Lagrangian approach for routing the leading front
of the discharge, should be applicable for multiple injection, by solving the model
concurrently for each individual discharge. This is useful for design and simulation
of ASP operations. Optimal control of the multiselective injection procedure re-
quires that the withdrawal port should be designed so that fluid may be withdrawn
from any depth within the stratified flowing layer. This characteristic will proba-
bly have to be accomplished by providing each layer with a separate withdrawal
port and a separate pumping system.
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AXISYMMETRIC INTRUSION IN A STRATIFIED FLUID

Nikolas E. Kotsovinos

Democritus University of Thrace,

67100 Xanthi,Greece

1. INTRODUCTION

A number of environmental flows can be approximated by the flow of a
buoyant plume in stratified environment, e.g. the flow from a sewage
ouffall in a stratified sea, or the flow from a chimney in a stratified
atmosphere. In those cases, the buoyant plume rises as high as its
momentum and buoyancy will carry it and then It spreads horizontally at
its neutral level.

Previous experimental studies of horizontal spreading due to
continuous release of a constant flow rate refer I) to axisymmetric
surface spreading of a buoyant fluid in homogeneous non-moving ambient
fluid (e.g. Chen and Ust (1976), Lister and Kerr (1989)) ii) to the
spreading of a heavy fluid on the bottom of a light fluid reservoir (e.g.
Didden and Maxworthy 1982, Brltter 1979, Huppert 1982) iii) to
two-dimensional intrusion in a stratified fluid due to a finite volume
release at neutral level (Cerasoll 1978, Maxworthy 1972). To our
Knowledge, the only available experimontal results which represent the
axisymmetric Intrusion in a stratified fluid due to continuous Inflow
are those of Zatsepin and Shapiro (1982), who, however, study only the
viscous-buoyancy regime of tha intrusion.

Theoretically,the axsymmeitrlc lateral growth of the submerged
spreading In a stratified environment has been studied by Chen
(1980),Zatsepln and Shapiro (1982),lvey and Blake (1985),Dldden and
Maxworthy (1982),and Uster and Kerr (1989).

All these Investigators find that at large times there Is a
balance between the Interfacial viscous forces and the buoyancy ( or
pressure ) forces and that at this regimei 1 e radius R(t) of the
spreading layer increases with time t as t For smaller times
Inertia forces are Important and therefore there must be an asymptotic
regime which is characterized by a balance of the Inertia and buoyancy
forces;experimental data do not exist for this rigime but theoretical
studies predict that in this regime R(t) - t" ,where m-1/2
according to Ivey and Blake "'185), m-2/3 according to Chen (1980),and
in-3/4 according to Didden dnd MaAworthy (1982). One of the
contributions of this paper is to clarify this conflict for the proper
radial growilh in the inertia-buoyancy regime .

2. ANALYSIS OF THE PROBLEM
2.1 Continuity equation

It is assumed that the buoyant plume impinges violently its neutral
stability level, overshoots and then descends and spreads horizontally
(see F~igure 1). It Is reasonable to distinguish two regions i) the

, Impingement region within the ontrol volume ABCD where the flow is in
general very turbulent and is characterized by a lot of entrainment and
1t) the main spreading region which Is oiftslde the control volume ABCD.
On the average the entrainment In the region ABCD is proportional to the
-flowrate so that in general the radial (horizontal) volume flux is ca
Swhere c Is a constant larger than one which depends on the flow and
stratification paramoters.This constant clearly tends to one when the
buoyant plume Impinges Y-•th very small vertical momentum its neutral
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density level and increases with increasing the vertical impinging
momentum. The flux of the entrained fluid in the spreading layer
outside the region ABCD ( see Fig. 1) Is a small fraction of the
flowrate cQ and therefore we may assume that to the first
approximation the conservation of mass gives:

Volume of spreading fluid outside the control volume ABCD = cOt

If we assume that the typical vertical and horizontal extent of the
intruding fluid are H and R respectively, then the continuity equation
gives HR2  _ Qt (2.1)

2.2 VERTICAL MOMENTUM EQUATION
By integrating the vertical component of the momentum equation over

the spreading patch and by neglecting small terms (i.e. change of
vertical Inertia) we obtain the physically expected result that the total
weight of the slug balances the total pressure force which acts on the
slug surface S, i.e.I I' ""~

PV Ps 0 gn3 dV = J p(x)n(x) dS (2.2a)

where pr('0 is the density at any point - within the slug and p(-) is
the pressure at any point I at the interface of the slug due to the
hydrostatic ambient pressure ; n(x) Is the unit vector perpendicular
to the surface,and n3 (x) Is its vertical component. Since the
hydrostatic ambient pressure depends on the ambient density profile (
and the depth), it is clear that equation (2.2) Imposes a relationship
between the density of the slug and the ambient density.
Although the density within the slug Is not known, we may assume that to

the first approximation the density within the slug varies linearly with
the depth. It is assumed also that the ambient density varies also
linearly with the depth, so that it is easy to Integrate equation
(2.2) in a slug of constant depth H and radius R (see Figure 2) to find
the following relationship between the ambient and slug densities:

Pau + Pal = Pu ' PI (2.3a)
where pau and Pal are respectively the densities of the ambient fluid
at the upper and lower Interfaclal layer of slug, and pa and p, are
respectively the densities at the upper and lower interfacial layer
within the slug. Similar equations to equation (2.3a) can be found for
various combinations of ambient and slug density profiles.For example
assuming that the density of the fluid in the slug is constant and
equal to ps and linear ambient stratification ,then It is easy to

find that
Ps '• Pu 'PI =(Pal+Pau )/2 (2.3b)

it is Interesting to notice that equation (2.3a) Implies
that

pal-pl pu-Pau i.e. since pa. > P, we must have pu> Pau
i.e. the upper region within the slug has a density smaller than the
density of the ambient fluid. This is interesting because it Indicates
that the upper region of the slug is locally In unstable stratification
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I.e. the gradient Richardson number Is negative,but the lower region
is in stable stratification. Probably this explains why visual

observations indicate that the lower region of the slug is smoother
than the upper region.

Following Barenblatt (1978) and assuming linear densities
profiles within the slug and in the ambient fluid , It is easy to
calculate the pressure distribution inside and outside the slug and the
excess horizontal pressure force F which drives the spreading

F p'gH2 R (2.4)

where P' = (Pu Pau)/ 6 (2.5a)

The horizontal pressure force F which drives the Intrusion Is

usually called 'buoyancy " force ,and it Is due to the 'squeezing'
vertical forces exerted on the upper and lower horizontal surfaces of
the slug.

Assuming linear ambient density stratification but constant
density ps within the slugthen the driving buoyancy force is

given again by equation 2.4 with
p'=(Pal-Pau )/12 ( 2.5b)

2.3. HORIZONTAL. MOMENTUM EQUATION-SCAUNG ANALYSIS
The methodology that we will follow to find the asymptotic

growth rate of the radius R(t) with time Is based on the balance of the
forces, which drive and retard the flow. Similar methodology has been
used previously by Chen and Ust (1976) and Didden and Maxworthy
(1978)

The forces which drive the flow are two: the Initial radial
momenbtm MR flux out of the control volume ABCD (see Fig.1) and the

pressure force F .The forces, which retard the flow are also

two:the inertia of the slug fluid and the Interfacial drag which LA
exerted by the ambient fluid on the intruding fluid.

Subsequently we find the scaling of the above mentioned forces,
where the continuity equation (2.1) has been considered and where the
typical horizontal velocity U within the Intrusion is given by R/twhere
t is the time .We assume that t-O when the vertical plume reaches Its
neutral density level.

F, - rate of change of the inertia of the fluid within the

slug -O(psR 3 Ht"2)=0 O(p RQ" 1) (2.5)

Fp - pressure force = O(p'gH R)= O(p'gQ2R0 2) (2.6)

F-1 - laminar interfacial shear force -
..O(pR3 H'l") = O(pRSQ 1I t-) (2.7)

We consider below the following four regimes of the radial growth R(t)
under the balance of the corresponding driving and retarding forces:

i)First regime:
large radial momentum flux MR and small times t ;in this regime the

flow is similar to the radial momentum jet and on dimensional analysis we
find:
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Rl(t) = C1MI•/4 t1/2 , (2.8) where C1 is an expedmental constant.

li) Second rogir, e:

balance of radial momentum flux MR and the inertia force FI

Fl2(t)- C2(MR/Q)t,(2.9) where C2 is an experimental constanL

ili)Third regime:
balance of the pressure (buoyancy) force Fpand the inertial

force F• '. i.e. F_., F,, so that we obtain:
R3(•) - C3 #'gQ/;s)l/4 t314 (2.10)

where C3 is an experimental constant.

iv) Fourth regime:
balance of the buoyancy driving force Fp and the retarding

Interfacial shear force Fsh,

i.e. R4(t) - C4(P' gQ3v/ps )1/8t!/2 (2.11)

where C4 is an expe6mental constant.

Therefore, the radiaJ submerged axlsymmetrio spreading is
characterized by four regimes. Subsequently we describe experiments
conducted to test the above asymptotic laws.
3. EXPERIMENTAL PROCEDURE

A well organized seriP.s of approximately 100 experiments were
performed to make possible the appearance of all possible regimes in the
radial growth history. For this pu.rpose we varied conald•rably the
Initial parameters and the ambient stratification and we conducted the
expedmei'ds In three different tanks of dimensions raspe•voly a)
l(X)cmXlOOcm by 30crn deep b) 120cmX120mn by 60cm deep and c) 270cm by
480¢m by 200cm deep. Tap water and commercial salt was used to
stratify the tank, in such away that the strawed fluid essentially
consisted of three layars:a top layer and a bottom layer with
constant densities Pl and P2 respectively and an Intermediate

pycnoline layer in which the dQnsity increased linearly with the
depth from Pl to P2 " The Intrusion was produced by
discharging colored tap water of density Po = l gr/cm3 at constant volume

flux (measured using a calibrated flowmeter) at the bottom of the tank
through a pipe of d•ameter D, which varied between 0.2 c• to 1.25 cm. The
constant Input volume flux Qo varied from 0.2 to 85 cm"/sec (i.e. aJmost

three orders of magnitude) and the Initial Reynolds number from 63 to
6800. The Initial densimetdc Froude number varied from 1.5 to 200.

The spread of the buoyant plume at its neutral level was monitored
using a video camera. The time from a large dlg.P• watch w=.s also
recorded. For small Reynolds numbers, the spreading interface was
smooth, although not always ax•ymmetdc. For larger Reynolds numbers
(Le.Re> the visuaJ appearance of the Intrusion was characterized by
instability waves.We calculated the area A within the contour of the
spreading patch at time t using a digitizer Interfaced to a personal
computer. The mean radius R(t) of the contour at time t
was •lated from the relation

R(t) = v/A/FI (3.1)
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The Brurit-Vaissala frequency was calculated by the relation4

N - (-g~p - 1 p puH)1
In these experiments varied N from 0.06 to 4 sec
4. EXPERIMENTAL RESULTS -DISCUSSION

For each experiment the radius R(t) of the spreading slug was
determined using Equ. 3.1 and plotted as a function of time. Typkcal
results are shown In Figures 2A34 showing the tour regimes and the
transition between these regimes. It can be seen In Figure 2 that there
Is a ~J-defined region in which the radius R(t) at small times growths
like t"ýV (regime of radial jet) and Mhen the next regime of with slope t
appears..

In Fig;.S3/ ~ can be seen the transition of the Inertia- vgancy
regime (113-. t ') to viscous-buoyancy regime (144- t "y) In some
experiments the combination of the Initial parameters was such that the
regime R2(t)-t collapsed and the transition occurred from the radial
jet regime (R1 - tlýto Inertia -buoyancy regime (R3- t3"4), as Is
Indicated in Figure 4. It Is also Pointed out that for 'small" Reynolds
numbers at the jet exi (or for small Input volume fluxes) the radial
momentum Is negligible and the regimes A1, R2 and R 3 could not be
observed; In tha case the only observed regime Is the viscous-buoyancy
regime 11 07, as Indicated In Figure 6. All the experiments of
Zatsepin and Shapiro (1982) learly belong to this regime.

The driving horizonital radlial momentum Is larger than the driving
buoyancy force when

M > p'gH2R or for t < MR 2~HI~1~

It Is therefore apparent that when the (driving) radial momentum is
"Iml the first two regimes R 1 and R2 can not be observed. For t>t, the
dominant driving force Is the pressure force Fp and the balance of
forces gives either the regime R%- t3/4 or the regime R4 _ 12

The length R. and time To scales which separate the inertia-buoyant
regime R3 fromn the viacous-b~joyant regime R4are given respectively by

Rc- [2. 3- .1 18and T ,[1 a ] 11/2
L (P'QQv /P,)JT L (P g9.v/'P)Jj
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Abstract

Standing internal waves, so-called seiches, are ubiquitous in reservoirs and lakes.
While the stratification in such basin is often continuous, the modeling of seiches
has been confined mostly to two-layer models. Such models are unable to give
reliable insights about the vertical structure of the seiches, which might be crucial
for the understanding of vertical mixing in natural water basin. To obtain this knd
of informations a 2-dim. computer model has been developed, which takes both the
continuous stratification and the bottom topography into account. The results of
this model are presented. The computed seiche modes reveal that

i. several large scale modes can exist with similar eigenfrequencies;

ii. the modes have a tendency to develop narrow jets;

iii. only the lowest modes are strongly influenced by the bottom topography.

1 Introduction

Standing internal waves, so-called internal seiches, are nearly omnipresent in reservoirs
and lakes. Most of these are gravity waves, for which gravity, or more specifically buoyancy
is acting as the restoring force. For a medium sized lake internal seiches have typically
periods of hours and amplitudes of several meters.

Due to the large amplitudes, internal seiches are important for various processes in
lakes. They cause a periodic vertical displacement of the suspended biomass and thus a
periodic variation in the light intensity to which algal cells are exposed (Gaedke and Schim-
mele [2]). The bottom currents associated with internal seiches can enhance dissolution
and remobilization of nutrients by transporting the products of bacterial decomposition
away from the sediment-water interface into the bulk water. The shear field associated
with bottom currents can lead to small-scale turbulence, which is able to resuspend ma-
terial from the sediment (Gloor et al. 14]).

To study the influence of bottom topography on the vertical structure of internal
seiches in lakes a two-dimensional numerical model has been developed. The vertical

*Present affiliation: Max-Planck-lnstitut fUr Meteorologie, Bundesstr. 55, 20146 Hamburg, Germany
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structure of seiches is well known for lakes with constant depth, i.e., lakes with a rect-
angular cross-section. In this case the vertical shape of the seiche is easily computed by
separating the horizontal and vertical coordinates. If the depth varies, as is always the
case in nature, such a separation of horizontal and vertical structure is no longeia possible.

There are indications that the influence of bottom topography on the seiche modes
is substantial. As internal seiches are a special form of internal gravity waves they are
obliged to the same reflection laws as internal gravity waves. Now the reflection of internal
gravity waves off a sloping boundary is quite peculiar. It is not the angle between the
incident wave and the lake bottom which is conserved upon reflection, but the angle
between the wave number vector and the vertical. Furthermore, neither the modulus of
the wavenumber nor the amplitude of the wave is conserved. If the slope angle of the
bottom is close to the angle between the wave number vector of the reflected wave and
the horizontal, both the wave number and the amplitude of the wave undergo strong
amplification. This increased amplitude of the reflected wave increases the probability
of its breaking. Such brealdng of internal waves is believed to play a key role in vertical
mixing processes in the ocean (Garrett [3]).

In view of the reflection laws of internal gravity waves what is the shape of the their
standing modes in a basin with sloping bottoms? Bringing some light to bear on this
question has been a major motivation for the present study.

2 The model

In two dimensions (one vertical, one horizontal) the governing equation for a stream
function -0 of free, infinitesimal internal gravity waves in a hydrostatic Boussinesq fluid is

94¢ 2 092¢
8 + N -= (1)

Here N = N(z), t, x and z, denote Brunt-VMiisflld frequency, time and the horizontal and
vertical coordinates, respectively. Employing the rigid lid condition eliminates the surface
waves. Then, assuming no outflow, the boundary conditions for 7P can be combined to

4 = 0 at the boundary. (2)

For seiches the time dependence is sinusoidal 01 = O(x, z) sin (wt), which yields the follow-
ing eigenvalue problem in w for the spatial structure of the stream function:

Oz2  N 2 Ox 2  0. (3)

with 0 = 0 at the boundary. Note the hyperbolic form of (3). The dispersion relation
following from (3) is

S= N2  (4)

with k = (ks, ky) as the wave number vector. In a rectangular basin the waves number
vectors, which fulfill the boundary condition (2) are (ks, k.) = (ILsr, mDir); 1, m = 1,2,.
Inserting this in the dispersion relation yields for the frequencies of the seiche modes

2 D 2 )2(5)
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This shows that each eigenfrequency is infinitely degenerate, because w'nm) Wg, 1 for

any n = 1,2,.... Furthermore, and even more remarkable, the spectrum is dense (in
the mathematical sense) on the positive real axis, because each rational number can be
written as 1/7n for suitable I and m. The frequencies connected with large scale motion,
i.e. small I and m are surrounded by small scale motion, i.e. large I and mn. This forms
a major difficulty to find the desired frequencies of modes with large scale motions. The
properties of the eigenvaiue problem (3) prevents the usage of any of the usual numerical
methods to solve such problems.

We discretized the domain using finite differences on a rectangular grid, which was
adjusted to the stratification. The discretization itself filters all wavelengths shorter than
twice the grid spacing. Aa the numerical to solve (3) we either used the QZ-algorithm
(Moler and Stewart [5]) or the Schur-Raleigh-Ritz (SRR) variant of inverse vector iteration
(Stewart [7]). For low resolution all eigenvectors were computed using the QZ-Algorithm.
The elgenmodes were sorted by the overall shear of the connected flow field. This way
only the modes with the largest scale motion were selected. For finer resolution and to
test the independence of the aigenfrequencies and mode structures from the spatial grid
used the SRR technique was used toe compute the eigenvectors in a narrow frequency
interval. For more information see Miinnich [6].

3 Model results

3.1 Parabolically shaped lake.

As one type of lake with non-constant bottom topography we choose two differently scaled
parts of a parabola to model a typical "bathtub-shaped" basin. Usually the thalweg of a
lake is not symmetric, and it is interesting to investigate how this asymmetry influences
the form of the seiches. The different scalings of the sections of a parabolas are used to
obtain such a asymmetric basin and to allow a change the degree of the asymmetry. More
specifically, the following one-parameter family depth function D,,(x) is used

Ir + (½-(') for 0 <.T < a;
( j-i + ) 2  for a-x <(

Here the free parameter a determines the asymmetry of the basin. Fig. I shows the largest
scale mode for increasing asymmetry. The most striking result is the constancy of the
location of the maximum of the stream function, i.e., the place of no motion. It looks as
if the streamlines of the modes are pushed to this fixed location by the boundary, leading
to an accumulation of these lines near the lake bottom. If this is true in reality there
would be a "hot spot" of mixing iu this region. Another feature is the depth of the node.
It is not situated in the middle of the lake, as is the case for a rectangular basirn, but is
shifted towards the deeper region. To our knowledge this has not yet been observed in
nature, but we must remember that a constant stratification throughout the whole water
body is quite unrealistic. Usually there is one maximum of N in the upper region of the
l ake.

In Fig. 2 the some large-scale modes for a = 0.3 and shown. Each mode is numbered
by its ranking in size of overall shear among all computed modes.

3
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Thdng Thulweg7 Figure 1: Streamlines of the first mode for a parabolic bottom with increasing asymmetry. The

stratification has a constant buoyancy frequency N. The periods T wa scaled by the ViH1
mode in a rectangular basin. The asymmetry parameter a is defined in (6). The grid resolution
is n, = 20 and n, = 15. Due to the finite resolution, the parabola in f is cut off before it reaches
its minimum.
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Figure 2: Some large-scale modes for a parabolically shaped lake with constant buoyancy
frequency N. The modes are sorted as explained iu Section 4.4. The order which the mode
obtained is indicated in the title. The period T is scaled by the lowest mode (I = m = 1) of a
unit rectangular basin with constant N = 1 stratification. The number of grid points vertically
and horizontally is % = 30. The asymmetry parameter is a = 0.3.
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Figure 3: Higher modes for a parabolically shaped lake with constant buoyancy frequency N
and asymmetry parameter a = 0.4. Resolution: n, = n, = 30.

Modes 1 (Fig. 2a) and 2 (Fig. 2b) have nearly identical periods. A region of strong
currents near the bottom is associated with both modes, but mode 2 has nearly no motion
in the upper left part of the lake. Both modes will become excited by winds with periods
around T = 0.755. Mode 1 will have a stronger amplitude if the wind is blowing uniformly
over the lake, whereas if there are some sheltering effects which lead to weaker winds above
the left part of the lake, mode 2 might be dominant. In Fig. 2e, mode 8, with a similar
period, is displayed. This mode appears to be simila'r to mode 1, but with small-scale
noise superimposed on it.

Mode 3 (Fig. 2c) is easily identified as the analog of the third vertical first horizontal
mode in the rectangular basin. Modes 5 (Fig. 2d) and 10 (Fig. 2f) seem to be two
variants of the second vertical first horizontal mode. Both have appropriate periods and
two (large-scale) extrema in their stream functions. Mode 10 shows some small scale
noise, as does mode 8.

In Fig. 3 the rest of the first 10 modes are displayed. All these modes are rather
unspectacular. There horizontal or ver-tical cell size (wave length) is small enough, that
these mode are not very strongly influence by the basin topography. Only the flow cell
adjust to the local depth. So only the low-order modes with space scales on the order of
the size of the basin seem to be strongly influenced by the bottom topography.

3.2 Two basins separated by a sill

Another basin form often found in nature is a lake consisting of two (or even more)
basins separated by sills. As the deviation of such a profile from the rectangular is more
pronounced, we should also expect larger differences in the seiche modes.

Up until now we used a constant N stratification, whereas the buoyancy frequence
profiles in natural reservoirs usually have a thermocline, i.e., a pronounced maidmum N
in the upper region. For this reason a stratification as shown in Fig. 4 is used in the
following.

For the bottom topography we use a fourth-order polynomial. To be more specific,
we use the one-parameter family of depth functions

D((x) = 1+ ( (2 -- a)(2x - + + a)4"5. - + (7)

, +



I

0*

-0.5

-1
0 0.5 1

N
2

Figure 4: Stratification used in the following seiche calculations.

and choose a = 0.6, which gives a medium-sized sill. Fig. 5 shows the first few modes
ordered by our sorting routine. Whereas the first three modes shown in Fig. 5 a - c axe
higher modes, it is the 4th mode which we tend to interpret as the first basin mode. This
mode has some interesting features. The streamlines accumulate at the boundaries, while
the interior is relatively quiet. At the two ends of the lake the streamlines bend into the
interior at a depth of about z = -0.3. To a lesser degree, a similar beading is also seen
in the middle of the uppermost streamlines. The mode is quite noisy, and one might tend
to believe that this is just due to computational flaws. Even though we do not think that
the streamlines are reliable in all details, the overall pattern was found for different grid
resolutions (see below) and for all topographies with small and medium-sized sills. We
therefore believe that the general pattern is reliable.

Mode 6 again is a higher vertical mode. The last mode displayed in Fig. 5f, mode 10,
has a similar period as mode 4. It can be interpreted as another first basin mode. In this
mode we see again that the streamlines have moved together. Like mode 4 this mode is
quite noisy but here the tendency of the streamlines to bend into the interior of the lake
appears to be stronger.

In Fig. 6 a few other modes and their shear ranking axe presented. As we have already
seen in Fig. 3, for such higher modes the structure is not particularly dependent on the
form of the topography. Again only the current cells adjust their size to the local width
and height.

4 Conclusions

Motivated by the peculiarities of internal waves in continuously stratified waters and by
the dominance of large scale standing internal waves, i.e., seiches, among the internal
waves in lakes, we studied the influence of bottom topography on the vertical structure
of internal seiches.

We established that the mode spectrum of a lake with continuous stratification is dense
for a rectangular basin, which implies that such a lake can oscillate, at least in principle, at
any frequency whatsoever. The reasons why lakes still show distinct resonant frequencies
due to seiche motion are presumably two-fold. Firstly, most of these seiches are small-
scale motions which are not directly excited by the basically homogeneous wind stress.
Secondly, the shear stress associated with such modes is higher, and therefore these seiches
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Figure 5: Modes for a medium-siaed sill and the same peaked stratification as in Fig. 4. Higher
modes are shown in Fig. 6. The numbers of grid points vertically and horizontally 5e n, = 20
and n = -25, respectively. The periods given in the titles are scaled by the periods of the largestscale mode in a unit rectangular basin with constant , 'V =1 stratification.
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Figure 6: Higher modes for a shallow sill and the same peaked stratification as in Fig. 4. The
parameters are: a 0.6, n,,= 20, n.T 25.
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are more strongly damped.
A linear, inviscid, two-dimensional numerical model was developed to compute the

seiche structures and periods in lakes with any given morphometry and stratification.
Using a stream function it was possible to use the exact boundary conditions for the
seiche motion at the sloping bottom. The main numerical problem remaining was the
density of the eigenvalues. As we were interested in pure modes, we did not build any
friction or forcing into our model, and consequently the seiche spectrum remained dense.

Discretization was used to filter out most of the higher frequency seiches. Any finite
difference model can only resolve structure on a scale similar to or larger than the grid
size, so that modes with a finer structure are not represented.

The model was applied to two kinds of lake prototype: a "bathtub-shaped" lake
constructed of parabolas, and a lake consisting of two basins separated by a sill.

In a bathtub-shaped lake with constant stratification (buoyancy frequency N = constant),
the model predicted a region of strong currents in the hypolimnion near the gentle slopes
at the lake bottom. Often two or even three kinds of large scale seiche modes were com-
puted with similar periods but distinct mode structures. For higher modes with spatial
scales smaller than the spatial scales of the variation of the thalweg, this variation was pre-
dicted to have only a moderate influence. These modes adjust smoothly to the changing
depth.

For a lake with a sill, the largest-scale mode was predicted to result in strong currents
above the sill. For some parameter values for the height and position of the sill, these
currents spread out throughout the whole water column to form a closed, jet-like structure.
Such a region of strong currents is consistent with the prediction made by Baines [1] of
increased seiche wave amplitudes above convex bottoms. Again the small-scale modes
adjusted smoothly to changing depth.

References

[1] P. G. Baines. The reflection of internal/inertial waves from bumpy surfaces. Part 2.
Split reflexion and diffraction. Journal of Fluid Mechanics, 49(1):113-131, 1971.

[2] U. Gaedke and M. Schiminele. Internal seiches in Lake Constance: influence on plank-
ton abundance at a fixed sampling site. Journal of Plankton Research, 13(4):743-754,
1991.

[3] C. Garrett. Marginal mixing theories. Atmosphere-Oceun, 29(2):313-339, 1991.

[4] A. Cloor, A. WujCst, and M. Muin-.eli. Be.thac boundary mixing and resuspensLion
induced by internal seiches. Hydrobiologia (in press).

[5] C. B. Moler and G. W. Stewart. An algorithm for generalized matrix eigenvalue
problems. SIAM Journal Numerical Analysis, 1.0:241-56, 1973.

[6] M. Miinnich. On the influence of bottom topography on the verlical structure of internal
seiches. PhD thesis, Swiss Federal Institute of Technology ZUrich, 1993.

[7] G. W. Stewart. Simultaneous iteration for computing invariant subspaces of non-

hermitian matrices. Numerische Mathemathik, 25:123-136, 1975.

8

I. -
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ABSTRACT
The stability of a two layer exchange flow through a contraction is investigated experimentally and analytically.
Experiments validat the predictions of hydraulic dhery fromn cases with no net barotropic flowrates to wedge
flows with high barotropic flowrates. Instabilities whch depend on the shear layer Reynolds number and the
local Richaoson number exist at various scales. Linear stability analysis of a tanh velocity and density profile
with varying thickness ratio and boundaries imposed at arbitrary distances shows the existence of several modes
of instabilities including Holmboe and Taylor modea. The stability properties of exchange flows ar described
bav:d on this model

INTRODUCTION
Two layer exchange flow tluough a contraction of slowly varying geometry is described by the internal

hydraulics model outlined by Armi and Famer (1986). The exchange is controlled at locations where the flow
is critical with respect to internal waves; at the narrowest section and at a second, 'virtual' control. For flows
with no barobqlic component these control locations coincide at the narrows. Addition of a moderate barowopic
net flow citates a subciritical region between the two controls and changes the int•-face level at the narrows fErom
half depth. Strong net baroeropic flow arrests one layer and as the barotropic flowrate is increased, wedge or
'box' flows are stablished.

The assumptions used in the formulation of a hydraulics model for the exchange flow allow only long wave
solutions. Attention to doe stability of these flows has therefore been limited to infinitely long waves. Long
(1956) obtained the criteria for stability of infinitely long waves in a bounded shear flow. Defining tde stability
Froude nmnber by F72 = AU /g'h, where g' is the reduced gravitational acceleration and h is the total depth,
Long's crieria is F2 < 1. for stability.

Arni and Farmer considered long wave stability at the conuol locations. Flows with no barotropic component
were found to be marginally sable whreas addition of net baromropic flow stabilized the flow at the controls
with respect to long waves. Lawrence (1990) further studied the long wave stability of barotropic flows
throughout the channel aid found that a net baroupic flow caused shear to decrease upstream wilh respect to the
net flow and to ihcrease downstream. As a result these flows bacone unstable at a location downstream of the
narrowest ectio, where the interface level is at hall the total depth and beyond whicb F, >1.

Our laboratory experiments show that exchange flows are pedicted well by hydraulic theory and that
Lawrence's stability analysis for barouopic flows can give a general description of stability ptoperties of a real
flow over a range of Reynolds numbers. Flows are indeed found to be unstable to long waves following
hydraulic analysis. However, we also find that exchange flows are unstable, in many ca,.e, to smaller
wavelength disturbances while long waves may be stable. Figure 1 shows low and high Reynolds number
exchanges with no net barotnopic flow illusnwing the variation of stability.

The phenomena observed in the laboratory were also investigated analytically by considering the linear
stability of a finite thickness shear layer bounded above and below by rigid boundaries.
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EXPERIMENTS
The exPermentl fncility condsised of a pleaiglas flat-bomwuned. convergean-divergern channel connecting two

reservoirs (figue 2). Each reservoir is 123cm x 246cm x 24cm. The conitraction portion of the channel is
112cmn long. 4 am wide at the nairowest Section and 10.2 cm wide at the ends. One and of the contraction has a
61cm long wAcion attached, of constat, 10.2cm width. Ail experiments were conducted with the reservoirs and
channels filled to 20cm. Density differences were obtained using salt and fte fluid was dyed with food coloring
to distinguish the layers

Videotape were use to obtain quantiatve flow data. Potasiu permangnat crystals dropped in the channel
left sharp vertial streaks, the timing of which was used to measure flow velocities. With avernle inteface
heights and vek~Cites, flowiazes and Froude numnbers were comiputed for selected locations. Erros in velocities
of mter 10% are due to meamunesut accuracy. bounidary layers and the finite thickmes shear layer.
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Forcing instabilities along the inmrface was auempted by variou techniques. the most successful employing a
latex membrane attached to a sidewall and intermiuently inflated with fluid. This reduced the width of chnmnl
and caused the interface height to change. Tlhe resulting distuarbanc would then be convocted with the flow.
This device was istarlled just downstream, with rexc to the net batropic flow, of the narrowest section.

Figure 3 shows composite Foude number, G2, and the stability Froude number, FA2 , for a flow with
noniensional barotrpic cocAponent. Uo - -0.21 (se Ari and Farmer, 1986). Thi data demonsrats that
the flow becomes supercritical downstream of the narrows. The data for F&2 shows that shear increases
downstream, destabilLiing the flow. The effct of friction in the exchange is evident in lower values of U2 and

FA2 than those predicted by inviscid hydraulic themy. For example, at M6 w 1, theory predicts G2 -1 and
FA2 

- 0.96 for this flow. The influence of friciion can be undeigood by fuos coaidaring a singie layer flow.
The growth of boundary layers along the sidewalls will lead to an effectively narrower channel with the control
existing downstream of the physical cotraiction. The rheted case of single layer flow over a sill was
investigated by Pratt (1986). For ft two layer exchange, the net result is the introdu.tion of a subcritical
region at the narrows for the case of no bamtropic flow, or, in exchanges with net barotropic flow. an increase
in the length of the subcritical region. This results in decreased flowratws and lower Froude numbem Taking
ths effects into account, laboratory expoiments validated the pedictions of hydraulic themy for exchange
flows with and without net barotropic flow.

Reynolds number effects were found to bc significant in the stability of exchange flows. A finite velocity
inierface develops between the two layers as a result of viscous diffusion, the thickness of which is a function
of the shear, AU, and the length of the channel, L; expressed in terms of channel Reynolds number.
8/L - Retw. The shear layer Reynolds number is given by: Re1 - Rev". Below a critical Rej flows are
stable to all wavenumber disturbances. At higher Re., the interface eventually becomes unstable to
disturbances which scale with tie shear layer thickness. This is displayed in figwc 1, for two exchange flows
with no barotropic componenL With small density differences (Ap/p - 0.0004) velocities were low and the
flows were laminar and stable everywher. With higie stratficaon (eop - 0.004), the interface is unstable to

hi.h.wavenu.,"be- -* devel' ... FOr" flows w-Ah 1 -- IL uAul uyL.t

component. Re. inwreaes downstream due to changes in 8 and AU. Moderate Reyiolds number cases were

chosen for more detailed study since, in these flows, the interace is distinct while ther are significant regions of
insin]ility.

For the cases with no net barotopic flow, the deth at the narrows genarally remained at half depth as predicted
by hydraulic theory, with intermittent periods of instability occurring on either sid. Finite amplitude waves
would grow and break as they were swept outward from the center. As barotropic flow is introduced, the
intoface height at the narrows follows hydralic theory and the upstream portion of the flow becomes noticeably
more stable. Disturbances travel upsteam (with respect to the net baroworpic flow), but generally damp ou.
Figure 4 shows images of a series of locatiom in the flow referred to in figure 3. The upstream portion is

completely stable hrough the narrowet section. Just downstream of the narrows, disturbances begin to appear
on the interface as the lower layer accelerates. Further downstream these have grcwn to finite amplitude A
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overturning and breaking waves. Far downstream, the fluid is cotsiderably mixed, with entraining vortices
dlistinguishable aklog the interike.

As the net barotropic flow is increased beyond the rate at which one layer is arrested, a wedge flow is
established. Inviscid hydraulic theory mra that the flow be internally critical at the narrowest section. Since
one layer is wrested this nequires: F u /g'y a 1 for the flowing layer at the narrowest section. From this we
see that as long as the leading edge of the wedge remains upstream of the narrows, the flow will remain stable to
long waves on the upstream side, aince F,2 (yhl)F 2 <1.0. As the flowing layer is accelerated downsucam,
shear increases and the flow becomes unstable to long waves downstream of the narrowest section. Figure 5
shows a wedge flow in which the lower layer is flowing. The net barotropic flow is from left to right. Hre tfe
lower layer plunges at the narrowest section and growing and breaking waves are seen to be convected
downstream. The growth and subsequent pairing of these instabilities could be observed until the vortices were
of the scak of the total depth of the flow.

ANALYSIS
We now consider a finite thickness shear layer and pursue a one dimensional inviscid analysis to obtain

stability properties at a selected flow location. 1"he exchange is represented by imposing rigid boundaries at
"b y distances fronm the intwface corresponding to the chan•rl bottom and free surfiace.

Hael (1972) perfornnd a numerical study of hyperbolic mangent velocity and density profiles with variations in
thickness ratiosý R. He studied the effect of equidistant boundaries on flows with equal thickness scales (R-1)
and found these destabilized long wavelengths at distances much larger than the layer thickness. Moving the
bowuidaies nearer eventually atabilized the flow to all wavelengths. For unbounded flows, a sharper density
intertace (R>l) inuroduced an unstable region, corresponding to the Holmboe mode (c.f. Holmboe, 1962), for all
a and 1. Lawrence, Lazsha and Browand (1987) further investigated this problem analytically and

I. . .



experimentally, but for piecewise continuous, linear velocity and density profiles with varying scales and
displaced centas. Again, variation of scales was found to produce a region of Holmboe instabilities.
Displacing profiles resulted in a third ,xmoe •stable mode, alo existing at all a and J, which they called the
'hybrid' mode, More racently, Caufield (1994) studied analytically a linear shear layer with an intemiediate
constan density layer separating the two homogeneous regions. Seveial unstable modes were found to axist
including the Hoknboe mode, a T mode, after Taylor (1931) who studied the cocrespooduig instability in equal
scale statified shear, and an additional mode called !he ' mode, coespondin to a resonance of Rayleigh waves
at low wavenumbers.

The studies discussed above form a basis for the consideration of finite thickness shear layers in exchange
flows. An idealized general shear layer model is shown ii figure 6. The stability of small disturbances in an
inviscid, incompressible. stratified shear flow is governed by the Taylor-Golds.in equation, which, for
Boussinesq flow, in dimenskones form is:

where f(y) is the nondinilsoal vertical disturbance velocity, c is the complex phase speed, u(y) is the basic
velocity profile, J is the Richardson number at the origin, P' is the nordimensional density gradient and o: is the
nondimensional wave numnber. All velocities ar nondimensionalized by half of the overall shear, AU - U1 -U2

and the length scale is one quarter of the shear layer thickness, 6. Using the Boussinesq approximation, we
define 13 as:

RAP 2p )
with P scaled so ts I laty= 1P. We tm enSthe profile:

P6y) - Rwh(

and velocity profile: U(y) = tanh(y)
to obtain a general velocity profile of thickness 6 with a density profile of thickness 6p - &R, offiset by 1qp,
given by:

2

The shear layer thickness is defined as dte distance between thde two points having 0.964 of the freestream
velocity (tanh 2 - 0.964). As R --. to, the density interface tends to a step. The Richardson number at the
origin, J, is then given by: J - Rg'6/2AU2 .

By using tie appropriam boundary conditions and the bakground flow at a location of interest in an exchange
flow, the problem is posed as an eigenvalue problem for the ccmplex phase speed, c. The no-slip condition at
th fie surface and at he c'wcl bottom require f=O at these locations. For a slowly varying channel, the
background flow carn be obained frion hydraulic theory or from experimcntal data. Solving this problem, we
can obtai stability data fnin the model,
For our experiments, shear layer thicknesses were measured from video rocordings of dye traces. Density layer

thicknesses were difficult to obtain precisely but from rough numerical analyses and consideratiot of the
Schmidt number foar salt, we estima that the density interface is 10 times thinner than the velocity interface.
Laboratory experiments show a very sharp interface between the layers at moderate Reynolds numbers (for
exampl see figure 4a).

Eigenvalues for the Taylor-Goldstein equation above were obtained using a finite difference approxination.
employing a two dimensional shooting method, with the no-slip condition on the boundary nearer to the
int•Urc as a target. Given flow conditions, including density differeace, layer velocities and depths, and shear
and density interface thicknesses, the complex phase speed is computed for a range of wave numbets at the
resulting Richardson number, 1.
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STABILITY PROPERTL5S OF' TANH PROFILES
Our problem is complicated by the various mechanisms for instability and their corresponding scales. 11e

stability of disturbance which scale with the depth is dependent on the conflit between destbilizing pressure
field variations and stabilizing stratification. The stability of disturbances which scale with 8 is dependenit on
the balakz between shear and stratification. In addition, Hoimboe instabilities may Csist. which result fromi anl
unstable phase coupling between disturbances on the velocity and density interfaces. For some ranges of
wavenunibers all of these mechanisms have aim effect on stability.
Tle J-ct planes for some of the cases considered are sketched in figure 7. For the case of R=1. we obtain an
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unstable region corresponding to the Taylor mode, unstable only for a range of a and for J<0.25. This mode is
characterized by zero phase velocity and most unstable wavenumbers of about 0.3-0.5. When R>1. this mode
with cr-0 includes a larger pmiion of the J-cc plane and a Holmboe region appears, characterized by a nonz=ro
propagating velocity and existing at all J.

The cffect of imposing boundaries on the tanh profile is to destabilize the lower wavenumbers. Higher
wavenumbers are generally unaffected by the presence of the boundries, except at very low Reynolds numbers
where the slear layer thickness may be of the order of the layer depth. The variations in relative layer depths
also affect the lower wavenumber stability. Changing the ratio of layer depths results in the addition of a real
component in the phase speed in the direction of the velocity of the thinner layer.

VARIATION OF STABILITY PARAMETERS IN AN EXCHANGE FLOW
In general. the inviscid stability of a shear flow depends on g', S, AU, R, up. yl, Y 2 and L. For an exchange

flow with a given density difference, these parameters are a function of chaniel geome.try and net barotropic
flowrate. The effect of viscosity will be to stabilize wavenumbers of scale less than 0(6).

With zero net baroropic flow, the shear, AU, was found to be constant throughout the channel (Lawrence,
1990). The density and velocity intatfac. thicknesses are functions only of the length of the channel. This can
be seen by considering boundary layers on either side of the inteface growing in opposite directions as shown in
figure 8a. At a given location the shear layer thickness is equal to the suAm of the individual boundary layers.
Layer depths are determined by channel width and energy difference between tho two layers. "Ir, Richardson
number, 3, is then constant for an exchange with no barotropic flow and variations in stability are due only to
changes in layer depths.

For exchanges with net barotropic flow, shear is increasing in the direction of the net flow. As a sult the
shar interface thickness is no longer constant. This is illustrated in figure 8b. Moderate barotropic flow will
result in slight variation in b, with J decreasing downstream as AU increases. The range of J for a given
stratification is limited by the variations in AU, 8 and the net barotropic flowrate. For the flow in figure 4,
measured values of J range from 0.5 at 10cm upstream (figure 4a) to 0.37, 25cm downstream (figure 4b).
Further downstream, mixing due to the instabilities cause J to increase once agaiL

For strong baroaropic flowratws, in a•diton to a growing shear layer and increasing AU, changes in the depth
of the non-flowing layer from zero to O(S) to 0(h) lead to varying scales for the instabilities. At the leading
edge of a wedge flow, stability is dominated initially by viscosity and by the presence of the near boundary.
We have not yet determined the variation of the density interface offset, 1ip, f0- exchange flows. If we follow

the model having two growing boundaky layers on either side of the density interface, then ip will be such that
the interface is at the location of zero convective velocity. By looking at the interface in a local frame of
reference, however, it seems there is nothing to suggest that momentum should diffuse mom readily into one
layer than the other. The cases referred to here then only consider 71p-0.

THE LONG WAVE LIMIT AND LONGS CRITERIA
Long's criteria for long wave stability can be obtained from hycaulic analysis of two homogeneous layers of

arbitrary relative depth:, with constant velocity profiles. The flow is found to be unstable to infinitely long
waves, Le. imaginary characteristis exist, for F2 > I.

For an unbounded shear flow, .he :•kii-"y boundary In. the !-ci plane, shiown in figure 7a, intersects with the
origin. When equidistait rigid boundaries are imposed, this intersection point moves up the J axis reflecting the
destabilizing of long waves at low Richardson number. As the boundaries are brought in closer, this effect
increases until the depth of the flow is 0(5), whpe, the intersection point again moves down the axis as all
wavelengths become stable. The location of this intersection point can be interpreted in terms of Long's criteria
if we relate J to F,'. We can rewrite J as:

Examining the limit of a--0) numerically (figure 7b), we find that the location of the intersection point for R=l
and 04wl, is predicted by Long's criteria:

.t o 2i
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For shear flows with R>1. in the limnit of c--40 (figure 7d), the intersection is not predicted exactly by Long's
criteria, due to the presence of the Holmboe mode. For J = J, and 8/hx 1 the flow remains uistable to
infinitely long Holmboe waves.

Using inviscid hydraulic theory, Lawrence (1990) obtained the resul." thai exchange flows with no net
barotropic flow are marginally stable to long waves, satisfying Long's critei r identically throughout the
channel. From this analysis we find then that these excange flows will bý wistable to long Holnboe waves at
the narrows since R>1, even though F2 = 1. The stability of this mode is dependent on the relative depth of
the layers, since it is a function of phase siqee, which depends on layer depths. As relative layer depths vary,
the flow becomes more unstable, until the depth of one layer is O(8).

CONCLUDING REMARKS
The inviscid linear analysis of the bounded tanh velocity and density p'ofile shows that various modes of

instabilities may exist. For the case of qp=0 these include the Taylor and Holinboe modes. The node wet
results at a selected location in an exchnnge flow then depends on the local Richardson number. Foz Rai0,
analysis shows that the most unstable mode for J<0.6 will be the Taylor mode. The effect of boundaries is
significant at low wavenumbmrs, but for 3/hl 1 the effect on the fastes growing waves will be sinall.

The stability analysis agrees well with experimental observations. Using flow parameters ueasured 15ci.
downstream of the narrowest section for the flow in figure 4, the shear layer mzrdel with R=10 predicts a mosi
unstable wave,,.'th of approximately 6cm, roughly the distance from core to core of the instabilities se.n in
figure 4b.

For exchange flows with no net barotropic flow aud 8/hlc. J will b-o snmll throughout the channel and the
instabilities will be within the Taylor mode region. For flows with a not barotronic compoaent, J vDries
through the channel. For 8/hI, the unstable mode will most likely b- the Taylor mode in the dowasueAm
regicn, where F2-1. Foi socr, exclhange, iý is possible that instabilities hi the upstream region, where Fi<I,
may lie within &he H-lmboe regioa. The ncture of thes wavz will rcquize furtlier investigation.
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Constricted flows from the Pacific to the Indian Ocean

by

Doron Nor1

Abstract

The question of how light water flows from one ocean to another through connecting
passages is addressed with the aid of a nonlinear analytical model. The focus is on the
indonesian passages, which are, too broad to be influenced by the so-called "hydraulic
conirol" and yet too na-row to allow free flow through them. The "choked" flows through the
passages, are driveti by the s,-alevel difference between the_ two adjacent oceans which, in
turn, is deterinied by the wind stress.

We, coisider two rectangular oceanic basins (each of which contains a light upper layer
overlyihg a slightly heavier deep lower layer) separated by a thin meridional wall. The wall
cohtns a gap which is initially blocked by a gate; westward winds are allowed to blow over
the two oceans creating western boundary currents ad a sea-level difference between the
basins. The conceptual gate is di.a removed and the resulting nonlinear flow from the intense
western boundary currents in t.he -1cific basin to the sluggish eýastern Indian basin is
computed. The final stady state is taken to be .analogous to the actual oceanic situation.

The analytical calcuations are based on a simple wind-diven- general circulation model
and a nonlinear integrated momentum constraint. The momentum integral allows both
determination of the resulting currents and computation of the mass flux through the gap.
Two classes of choked solutions are constructed. One mode corresponds to a situation where
the flow through the gap originates from the right band side (looking upstream toward the
inner Pacific basin from the cemner of the gap) and the other mode to a situation where the
flow origilates from the left hand side.

A simple gap for'nula which enables one to compute trb. transports via the gaps is
derived. Numerical simulations (using an isopycnic model for the first mode) illustrate that,
a•ter an initial peziod of oscillations, the theometicaily predicted steady state is indeed reached.
Similarly, qualitative "kitchen-typz" laboratory e:Kperimcnts with a stratified fluid on a
rotating table demonsatrate the establishment of the prediczzd currents.

It is suggested that the actual Indonesian throughflcw is composed of both classes of
flows, i.e., the througliflow corresponds to an exchange via two adjacent gaps rather than one
gap. The first gap (the southern passage) corresponds to South Pacific water entering the
passages whereas the second gap (the northern passage) corresponds to North Paciflc water
entering the passage.

tDk'arumezt of Ocenaography 3048 wand the Gecphysical Fluid Dynamics Institute, The Florida State
Uniivearsity, Tallahassee, Florida 32306-3048 U.S.A.



1. Introduction
The exchange of water between oceans is an interesting fluid dynamics problem. Of

particular importance is the exchange between the warm Pacific Ocean and the relatively cold
Indian Ocean (via the Indonesian passages) because of its potentially unique relationship to El
Nifio and the "Great Global Conveyor Belt" (see Fig. 1). In this article the question of h-ow
much water flows through the Indonesian passages and the origin of these waters will be
addressed theoreticaily using nonlinear dynamics.

Our approach is to consider two idealized oceans separated by a meridional wall that
contains a gap (Fig. 2). The eastern (inner) basin corresponds to the, Pacifi; and the western
(outer) basin corresponds to the Indian Ocean. The actual connecting flow between the two
oceans begins in the northern hemisphere where the Pacific water enters; it then, crosses the
equator and exits in the southern hemisphere (Fig. 1). Since we are mainly interested in the
composition and origin of the throughflow, we shall consider most of the area within the
Indonesian Archipelago to be a part of the Indian Ocean. Consequently, the location of our
gap corresponds to the eastern edge of the Archipelago which is located in the northern
hemisphere, several degrees north of the equator.

Both of our conceptual oceans consist of a thin upper layer (and a passive infinitely
deep lower layer) and are subject to westward Wiinds which raise the sea level along the west-
ern boundaries and depress the sea level along the eastern boundaries. Initially, a conceptual
gate is placed across the upper layer in the gap (Fig. 2) so that the pressure difference between
the basins is not causing any flow. In this irtitial state both basins contain a closed wind-
driven circulation consisting of a western boundary current and an interior Sverdrup flow.

The sea-level difference can be easily computed from the familiar vertically integrated x
momentum equation,

-2d ;j (h U(1.1)

where. f is the Coriolis parameter, V the (northward) vertically integrated traptPort (i.e., it,
the y direction), g the reduced gravity (g Ap/pw), h the upper layer depth, T":s-'the surface
wind stress in the x direction (i.e., eastward), and pw is the water density. Eq. (1.1) holds
both in th- sluggish ocean interior away from the boundaries and in the intense western
boundary current where the flow is geostrophic in the cross-stream direzdon.

Integration of (1.1) from the western to the eastern boundary gives the desired (square
of the) sea-level difference,

- hwe 2 + .a f gLj dx (1.2)

0

wh~ere, the subscri~pts w" and "ea" denote Wsociation with the western and eastern
boundaries, L is the basin's length, and it has been assumed that there is no net transport
within the cross-section (i.e., the boundary currnt transport cancels the Sverdrup transport).

The associated western boundary current speed can be estimated from the curl of the
wind stress. To do so, consider the linead,-ed y momentum equation,

=-- a (h") - RV (1.3)
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where R is the coefficient of interfacial friction (i.e., R - JPw, where w is the width of the
boundary current). Elimination of the pressure term between (1. 1) and (1.3) gives,

which, upon interrating across the basin and neglecting thc transport along the eastern
boundary, yields,

0

wheze Vw is dhe "ertically integrated meridional speed near the western wall. We shall see
that, with tUs information, it is possible to determine the transport through the gap.

This article is organized as follows. Thez problem is formulated ini Section 2, the
constraints and solution are given in Sectuion 3, awd .laboratory and numerical experiments are
described in Section 4. The study is sumrnanrized in Sectiur 5.

2. Formulation

Consider again the id-dalization shown in Fig. 2. As mentioncd, the wind field is only
important as far as settint, up the pressure difference across the gap via the establishment of a
western boundary current in the Pacific and a weak Sverdrup flow in the eastern Indian
Ocean. The direct t~ffect of the wind on the area in the immediate vicinity of the gap (i.e., the
region within a few deformation radii away from the gap) is neglected due to its smallness
compared to that associated with th.z entire Pacific and Indian Oceans. Namely, as far as the
gap's nonlinear dynamics are concernei, we consider an inviscid model where both the Pacific

wid Indian basins extend to infinity.I'2



With the above formulation, the complicated problem of exchange between two
adjacent oceans with nonlinear circulation and wind stress above (Fig. 2) has been reduced to
the inertial -exchange of two oceans with no wind stress above. One of these oceans (the
Indian) is stagnant and the other (the Pacific) contains a boundary current. All the variables
prior to the removal of the gate are now known (in terms of the wind field) and the problem
has been simplified to a highly nonlinear adjustment problem.

4,.,,.k.,
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corresponds to a situation where 141) is smaller than Ilk (Hp < H.1 ) but the western boundary
current near wall depth in the Pacific is still larger than H,,. Under such conditions, the
throughiflow originates in the North Pacific and peneLrates into the southern part of the Indian
Ocean. It will be later argued that the actual throughflow corresponds to a combination of
these two modes.
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3. The integrated momentum constraints for a stratified rotating fluid

As mentioned, exact nonlinear solutions will be obtained using the integrated
momentum. Consider a region S bounded by the dashed line for either mode one or mode
two (Fig. 3). Multiplication of the y momentum equation by h and integration over S gives,

f~ (iiu +hv ~1dxdy + ,fJ fuh dxdy + -JJ' (h') dxdy =O

which, by using the continuity equation and streamfunction W' (defined by a,/z)y = -uh; OW~/Jax
=vh) can be reduced to,

fJ[(huv)+ a (hv2)]dxdy~J - fowdxdy +~J a hdxdy 0 . (3.2)

SS S

Application of Stokes' theorem to (3.2) gives,

~huv dy- (hv 2 LIL foNI dx=O ,(3.3)

where 4 is the boundary of S.

By defining W such that along the free bounding streamline NI = g%'l-12 2fo, and taking
into account that away from the gap the flow is geostrophic, one ultimately finds,,

A F
B -41E C D

hH~ ~ ODE 1 ODE):

Innin (Ine..

basin fi' basin

~D B F~ E

Fig. 3. A diagram ot the integration area for modes I and 2. Mode I corrv;ponds to water originating on
the right hand side of the inner basin (looking toward the inner basiii from the center of the gap)
and mode 2 crrmesponds to water originating on the left. Mode 1 corr-esponds to a Pacific
offshore depth (H ) that is greater than the Indian offshore depth (Hii) and is relatively simple.
Mode 2, on the ohelr hand, coirespouds to Hp < fl and is harder to understand because one gels
the initial impression that water should flow from the outer to the inner basin rather than from the
inner to the outer basin. This is not the case because of the (negative) western boundary current
which raises the sea level along the wall. hi the outer basin, the integration area is bounded by
the wall, thc free streamline (h =Hn. Vj = 0) and a section across region 3. In the inner basin, the
integration area extends well beyond the expected decay region (i.e., DE is located several
deformation radii away from the walls). It is bounded by sections across region 2 and 1, the
walls and the line DE which is parallel to the walls,
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T hivi2 dx + h 2 v22 dx + J1o T3 h 3v 3
2 dx = 0 (3.4)

It is important to note that, even though the (uniform) Coriolis parameter fo does not
explicitly appear in this integrated momentum constraint, there is an important fundamental
difference between the rotating and the nonrotating constraint. The difference is that in the
nonrotating case (fo = 0) the pressure term gh•2/2 does not drop out of the equation (because f.
is not present) so that instead of (3.5) one obtains the familiar relationship,

(hivi 2+ 4. dX 4÷ 12 v2 2 2 +&_)dx + f 33 (h2v32n3 )dx=O ; fo=0.
0 o

Using the constraint mentioned above and other known constraints such a Bernoulli,
potential vorticity and linear momentum, the transports are ultimately found to be,

2f4

T 2  I_ 1- (I -HnJHp)e.jw+ljIl{ 1 ]2 (35)2f T

T3  f [1- (1 .. Hnip)e~iw+Ho/Hp'- ]2. (Hn/Hp)2}

4. Laboratory and numerical experiments

To examine the validity of the foregoing theory a set of qualitative "kitchen-type"
laboratory experiments and a set of numerical experiments were performed for a special case
of Mode I where there is no initial current in the inner basin and no light water in the outer
basin (i.e., Hn = 0).

For this special case the analytically predicted transport which approaches the gap (from
the right) is g'H2/2fo. The nonlinear transport through the gap is 0.3996 g'1 2/2fo implying that
about 60% of the transport never enters the gap. The laboratory experiments show in a
qualitative manner that indeed such a current system is clearly established (Fig. 4).

In addition, quantitative process-oriented numerical experiments using the Bleck and
Boudra reduced gravity isopycnic model agree very well with the theoretical predictions (Fig.
5). For this numerical experiment we used a closed inner basin of 1200 x 3400 kin and a
closed outer basin of 3400 x 3400 kin. The upper layer undisturbed depth in the inner basin
was 150 m, the "reduced gravity" was 10"2m sec2 , and the Coriolis parameter was 2.5 x 10-5
sece. These give a Rossby radius of about 50 kin and we used a gap that IS 25IV k,,m broad.
The horizontal eddy viscosity was 2 x 102 in2 secl, the grid spacing was 6 km (in both the x
and the y direction) and the time step was 360 sec. The boundaries were slippery and, as is
frequently done, the vorticity was taken to be zero next to the walls. It is important to note
that the adjustment process involves a considerable amount of energy loss. In the analytical
model, the loss is removed by the radiation of waves but the loss cannot be removed in the
numerical model. This causes the oscillations that are present in the runs.

-5-
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Fig. 4. Subsequent photographs of a typical experiment for the one gap problem. There is
no initial current in the (dyed) inner basin and no upper layer ui the outer basin. The
dyed light fluid starts penetrating into the outer basin when the gate is lifted. The
white ring is an (unavoidable) reflection of the fluorescent light shining from above.
At t = 0 the white ring is still distorted due to gravity waves generated by the
removal of the gate. Such waves disperse and change into Kelvin waves within a
few seconds. It is clear that, as the theory predicts, a counter-clockwise flow pattern
is established hi the inner basin even though the basin was initially at rest. This can
be easily seen by following the clusters of aluminum particles sumrounded by the
mawked (smilL and large) circles, and the marked open square. Physical constants:
f= 1.26 see*; Ap/p = O.01.
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Fig. 5. A comparison between the analytical and numerical solution for the one gap problem with no
initial boundary Current. The nuamrtically calculated transports in the various regions are shown as
a function of time. rbe model used is the i 1/2 layer Bleck and Boudra isopycnic model (see text

for dctails). The initial delay associated with the establishment of the currnts reflects the time that
it took for the information to reach the various regions in the model. Note that, given the simplicity
of the analytical model and the lack of a mechanism to remove excess rienrgy from the numerical
model, the agreement is excellentL This indicates that neither friction nor the tine dependent
oscillations are essential for understanding the processes in question.

5. Summary

Our findings are:

1. An exact nonlinear analytical solution to the exchange process (Fig. 1) can be
constructed. In terms of the undisturbed upper layer depths in the two adjacent
oceans (set up by the wind field), the transports are given by (4.1). The transports
can also be directly related to the wind stress and the curl of the wind stress via
(1.2) and (1.3a). Detailed computations are given in Nof (1994ab).

2. The above relationships are associated with two modes of exchange (Fig. 3). The
first mode corresponds to water originating on the right hand side (looking
toward the inner basin from the center of the gap) whereas the second corresponds
to water originating on the left. Both laboratory (Fig. 4) and numerical
experiments (Fig. 5) are in excellent agreement with the theoretical results.

3. It is suggested that the actual Indonesian throughflow is composed of flows
through two (.or more) gaps situated in the easternmost portion of the passages
(Fig. 6). The southern gap corresponds to the so-called mode 1 and is associated
with South Pacific water entering the passages. The northern gap, on the other
hand, corresponds to mode 2 which is associated with North Pacific water entering
the passages. Our nonlinear formulas suggest that 11 Sv (1 Sv = 106 m3/sec) enter
the passages from the North Pacific (mode 2) and I Sv from the South Pacific
(mode 1) combining to a total of 12 Sv.

This new (inviscid) nonlinear theory differs markedly from the linear theory which
suggests that most of the throughflow originates in the South Pacific rather than the North
Pacific. Our inviscid nonlinear theory agrees with the observations (which also suggest a
'..,dominantly North Pacific origin) without invoking an additional physical process. Linear
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Exchange Flow Through a Channel with an Underwater Sill

Zhiwei Zhu and Gregory A. Lawrence

Dept. of Civil Engineering, University of British Columbia,
Vancouver, BC, Canada, V6T lZ4

ABSTRACT

We have performed theoretical and laboratory studies of the exchange of two fluids of slightly
different density through a straight channel with an underwater sill. This exchange process is
controlled at locations where the flow is internally critical, called controls. The position of
these controls is shifted by frictional and non-hydrostatic forces. When internal hydraulic
theory is extended to incorporate these effects the comparison with experimental results is
much improved. Both Kelvin-Helmholtz and Holmboe instabilities are observed in the
experiments. Measurements of the wave length and speed of the Holmboe instabilities agree
with the theoretical predictions of Lawrence et aL. (1991).

1. INTRODUCTION

This paper considers steady, two-layer exchange flow over a two-dimensional obstacle in a
narrow channel (Fig. 1). The study was motivated in part by the exchange of Mediteaneanep
and Atlantic water through the Strait of Gibraltar, and by the exchange flow through the
Burlington ship canal conmecting the heavily polluted Hamilton Harbor with Lake Ontario.
Exchange flows were first studied by Stommel & Farmer (1953), and later by many
researchers, including Armi and Farmer (1986), and Farmer and Armi (1986) assuming
inviscid, hydrostatic flow.

Frictional effects may be important in exchange flows. Dalziel (1988) found that the inviscid
predictions always over-estimate the flow rate. Bormans and Garrett (1989) included
interfacial and bottom friction to study the role of friction in the exchange flow through the
Strait of Gibraltar. Frition was found to shift the control at the sill eastwards. Cheung and
Lawrence (1991) studied the exchange flow through a channel of constant depth, and obtained
estimates of the interfacial frictional factor from their experimental measurements.

Non-hydrostatic pressures caused by steamline curvature above the obstacle can be of crucial
importance in two-layer flows (Lawrence, 1993). Shen (1992) relaxed the hydrostatic equation
in his study of two-layer flow over a very small sill. Forbes (1989) numerically solved the full
non-linear equations for a semi-circular sill using conformal mapping. In the present study we
place less stringent restrictions on the size and shape of the sill.

For two-'layeri ecAh.sIW.1L fUws strong shear1 at th intellice gerieates hydIULs3I1MLAm 1 c

instabilities, most notably Kelvin-Helmholtz and Holmboe instabilities. for small values of
the bulk Richardson number, J, linear stability analysis predicts a Kelvin-Helmholtz instability
with zero phase speed with respect to the mean flow. For sufficiently large values of J,
however, there may be two unstable modes traveling in opposite directions. Holmboe (1962)
studied the special case where both modes have equal growth rate and equal but opposite phase
speeds. Li previous experimental studies it has proven difficult to obtain clear realizations of
Holmboe's instability, see Lawrence et aL (1991).

In the present paper we extend internal hydraulic theory to account for frictional and non-
hydrustatic effects, and we present results of experiments that provide perhaps the best
realizations of the Holmboe instability to date.



2. EXPERIMENTS

Experiments were conducted in a channel of dimensions 1200 x 300 x 100 (mm) (length x
height x width) connecting two larger reservoirs containing water of slightly different density,
see Fig. 1. A sill of the form h(x) = hm Cos2 (x/L) (for kx /L. 4 < i / 2) was placed in the left side
of the channel, where hm = 80 mm, and L = 160 mm. The cosine squared function was chosen
to have the relatively low values of obstacle slope and curvature. The driving buoyancy force
was obtained by dissolving salt in the right reservoir. The position of the interface and its
deformation by flow instabilities were visualixed by dissolving a fluorescent dye into the lower
layer and illuminating it with a thin sheet of laser light. Flow velocities were determined using
recently developed image processing techniques, (Stevens & Coates, 1994), which allowed us
to obtain an instantaneous record of the velocity field.

The experiments were started by removing the gate used to separate the two water bodies.
After an initial start-up phase of about two-minutes a maximal-exchange (see Armi & Farmer,
1986) with one control at the sill and the other at the far (right) end of the channel was
established. After about 4 - 8 minutes the exit control became submerged leaving a sub-
maximal exchange with a single control near the crest of the sill. We are primarily concerned
with the period of maximal-exchange during which the flow was quasi-steady.

One of the important features of the flow is the formation of Kelvin-Helmholtz and Holmboe
instabilities at the interface between the two layers. The K-H waves grow to the left of the sill
crest, where the shear is strong due to the high velocity of the lower layer; the Holmboe waves
develop in the right part of the channel, where the shear is not as strong. Only positive
Honimboe waves are observed initially. These positive waves are generated near the sill crest,
move to the right and cusp into the upper layer. Eventually disturbances form at the right end
of the channel and negative, left moving, waves are also observed. Fig. 1(c) is a sequence of
photos showing the motion of both the positive and negative waves. For different shapes of
the sill and different flow velocities, the nature of the instabilities change. The Holmboe
instabilities are discussed further in Section 4.

3. EXTENDED INTERNAL HYDRAULIC THEORY

Internal hydraulic theory can be extended to include the frictional and non-hydrostatic effects
for the two-layer exchange flow shown in Fig. 1(b). The following notation is adopted: u is the
horizontal component of velocity, y is the layer thickness, q is the flow rate per unit channel
width, p is the pressure, p is the density, g is the gravitational acceleration, and z = Yo, h + Y2,
h are respectively the positions for the free surface, the interface, and the bottom. The
subscripts i=1,2 refer to the upper and lower layer, respectively.

We start by considering inviscid, incompressible, and irrotational flow with immiscible,
layered (constant density within each layer), and Boussinesq (C = (P2-P)/P2 << 1)
approximations. Given the Boussinesq approximation, the "rigid lid" free surface assumption
is valid. We also assume the sill is smooth, and the flow is shallow; i.e., o = (H/L) 2 << 1,
where H and L are the vertical and horizontal characterislic length, respectively. Note that the
sill in our study can be of finite size, hWH = 0(i). This is less restrictive ihan Shea's
requirement that h/H = 0(o 2).

Assuming the horizontal velocity is constant across the layer depth, the vertical velocity can be
obtained from the continuity equation. Both the pressure, and the internal energy (Bernoulli
constant) have second order of accuracy 0(02) after averaging across the layer depth. This
averaged internal energy remains constant throughout the channel if frictional effects are
ignored. A brief outline is given below, detailed derivations will be presented in a subsequent
paper.

it
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II

Assuming ui(x) = • (i=1,2) (1)
yi(x)

We write the internal enerl y in the form:

E1 = EI + AEI, (2)

where the hydrostatic component is given by:

I1 2 2

EJH (3)

and the non-hydrostatic effects of flow curvature are given by:

q -2 : +hM (Y2j" +h 2

S' 3y2 2y2 2y2ý 6 y2 S' 3y, 6j

where g' = eg, is the reduced gravitational acciieration. El should remains constant
throughout the channel when frictional effects are not important. Thus, (2) can be solved for
Y2 (the lower layer thickness) with the non-hydrostatic effects accounted for.

When frictional effects are ako important, we follow classical hydraulic analysis (see
Henderson, 1966), and introduce a frictional slope, Sf, where:

dEl
dEI - Sf(5)

Using (2), and letting S, - d(AEI,) I dx, (5) becomes:

d(y 2 + h) s[ - So- S(
dx 1-G2 (6)

where F2 = q? / gyj3, and G2 = F? + Fj. The topographic slope So = F" •" for the straight

channel, the slope due to flow curvature S, = d(AEIJ) / dx, and the friction slope

Sf - _L fwy- 2 +f,(Y-l+yl2)2 +lIfi(A+q-j)2 (7)

'Y2 I Y2 Yr Y2 I 8Y1 YA Y2

where fi and Jw are the interfacial and bottom frictional factor. Solving (5) or (6) for
exchange flow with both the frictional and non-hydrostatic effects included is much more
complicated than solving for the frictionless and hydrostatic flow. The procedure used for
solving the latter will be briefly reviewed fi-st.

For the frictionless hydrostatic flow, the internal energy remains constant throughout the
channel. As Sf and Sc both become zero, the flow should be critical at the point where So= 0,
i.e., at the sill crest. For maximal-exchange flow in a channel of constant width, the flow is
also critical at the right end of the channel. Therefore, three equations, G2 = 1 at the sill crest
and the right exit, and the constant internal energy can be used to solve for three unknowns, q
(ql=q2=q for our experiments), Y2 at the sill crest and at the right exit of the channel.
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For frictional hydrostatic flow, the internal energy is changed by friction and the control
position is shifted from the sill crest. The bottom frictional factor can be obtained theoretically
from the boundary layer theory. The interfacial frictional factor is determined indirectly by
matching the theoretical and measured flow rates.

For the frictional non-hydrostatic flow, we may either use the iteration method starting from
the frictional hydrostatic solution, or solve (5) as a boundary value problem. Fig. 2(a) shows
the fiydrostatic and non-hydrostatic frictional predictions of interfacial positions compared with
the experimental measurements. Fig. 2(b) shows the change of the intertnal energy along the
channel. The initernial energy is changed significantly by friction. The inclusion of the non-
hydrostatic effects is important in the sill region as it raises the internal energy. The extended
theory provides excellent agreement with the experimental results, with the bottom and
interfacial frictional factors estimated to be about 0.01.

4. INTERFACIAL INSTABILITIES

The stability of a two-dimensional, inviscid, stratified shear flow depends upon the vertical
variation of density p(z) and of the mean horizontal velocity U(z). For the piecewise linear
velocity and density profiles of Fig. 3, the stability diagrams can be obtained, see Lawrence et
al. (1991). Four dimensionless variables are used-: the Richardson number J - g h i AV'; the
wave number a = kh, where k = 2rdX, and X is the wavelenoh; the relative displacemepi of the
velocity and density profiles d/h; and the wave speed c = (c -, U) / (AU / 2), where c" am the
wave speeds for the positive and negative wavis. The Reynolds' and Keulegan numbers may
also be important: Re = AUh/ v, and K=AU /(g'v).

From the stability diagrams, we know that K-H waves only occur for' the symmetric (zero
displacement, d/h =0) case with I < 0.07, while the Holmboe instabilities can occur for any
larger J, and also for the asymmetric cases (dt/h . 0). Fig. l(c) shows the movements of the
Holmboe waves observed in our experiments. In this flow J - 0.3, and the mean velocity is
about 0.5 cm/sec. Thus both waves ar traveling at about the same speed with respect to the
mean flow, satisfying the requirements for Holmboe's (1962) instability.

The wave length and wave velocity, for both the positive and negative waves, can be obtained
from measurements of variations i. the interface elevation. Fig. 4 shows a typical wave
characteristics plot, with the intensity representing the relative height of the interface. The
positive and negative waves appear as oblique bands of dark and light. Wave speed and wave
length can be easily obtained from the slope and spacing of the bands. These measurements
can be used to compare with the. theoretical predictions, A comparison for one experiment is
listed in Table 1. The flow has: U -0.6 cm/sec, AU-=4.0 cm/sec, h=3.0 cm, g'=1.6 cm/sec2 ,
and d/h - 0. Thus J is about 0.3, with Reynolds number Re = 1200, and Keulegan number K =
3500. We can obtain the theoretical predictions for the flow, knowing that the wave which has
the largest growth rate is the one most likely to be observed:

Tbl%. 1. C~omparisU of J e~ted and Measured Wave Characteristics

~!

..... Theory Measurement

Wave + (cm) 10.5 10

Length - (Cm) 10.5 11

Wave c (cm/sec) 1.6 1.5-1.8

Velocity c (cm/.e) - 0.4 - 0.5 - 0.6

i " --



Table 1 shows that the linear stability theory accurately predicts the wave length and speed.
The theory can also explain further experimental observations. During the early stages of the
experiment, the amount of the displacement of the interfaces is relatively large (dlh > 0.1) and
the negative waves are suppressed. Later in the experiment the magnitude of the zhft
decreases, and we start to see both the positive and negative waves. The reasons for changes in
the displacement of the velocity and density interfaces are not fuilly understood.

5. CONCLUSIONS

Exchange flows through a narrow channel with a sill are affected by both frictional and nou-
hydrostatic effects. Friction effects are important along the entire length of the channel, while
the non-hydrostatic effects are important in the vicinity of the sill. An extended hydraulic
theory including both the frictional and non-hydrostatic effects gives very good agreement with
the experimental results. Both Kelvin-Helmholtz and Hoimboe instabiiities are observed on
the interface. The wave lengths and phase velocities of the Holmboe instabilities compare weli
with the theoretical predictions of Lawrence et al. (1991),
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Fig. 1. (a) Plan view of the experimental setup. All dimensions are in milimeters. The sill
is placed in the left part of the channel, shown as the dotted area. (b) Definition diagram
of two-layer exchange flow over a sill, with both K-H and Holinboe waves. (c) Sequence
of photographs showing Holmnboe waves: The upper layer flow is from left to right, the
lower layer fromn right to left. The flow has a mecan velocity of about 0.5 cinlsec. Grids arm
5 cm apart. Photos are taken at 0.5 second interval.
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Fig. 2. (a) Comparison of the prediction and measurements of the interface position, with
fw=0.0 10, f1  0.011. (b) Comparison of the prediction and measurements of the internal
energy.
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Laboratory Experiments on Two-layer
Exchange Through Long Straits

V.S.Maderich, A.I. Kulik, V.V. Oleksiuk

Institute of Hydromechanics of the Ukrainian Academy of Sciences
8/4, Zheliabov st., Kiev 252057, Ukraine

Abstract
An experimental study was carried out to investigate water exchange through the
narrow strait with two-layer flow structure and net barotropic transport. The facility
consisted the tank that was divided on the two basins connected by a shallow and
narrow rectangular strait. One basin was heated at the bottom. Another basin was
cooled at the top. The velocity and temperature measurements were made using the
hydrogen-bubble technique and the temperature probes, respectively. The results of
measurements were given for the short, intermediate, long strait in dependence on
magnitude of the net barotropic transport. The experimental data were compared
with the model calculations based on principle of the maximal exchange.

1 Introduction

The extremely important role of straits in forming hydrologic and ecological con-
ditions in inland seas is well-known. The water exchange through strait depends
on the adjacent seas water balance and hydrologic structure as well as the strait
topography. Because of this the strait models remain to be the necessary part of
the model of the inland seas climate evolution (see e.g., Nof, 1979; Maderich and
Efroimson, 1986). Detailed hydrodynamic description of straits is difficult because
many factors and processes should be consider - strait topography, momentum and
mass transfer between layers influenced by turbulence and unsteady effects (tides
and surges). So, development of simple one-dimensional or even simpler bulk (null-
dimensional) models of sea straits is very important for hydrodynamic modeling and
pre diction of environmental processes in seas.

There are many straits with two-layer structure of currents (e.g., the Bosphorus,
Dardanelles, Gibraltar, Bab-el-Mandeb, Hormuz etc.). The intcrnal hydraulics of
a steady frictionless two-layer flow through channel was the most extensively stud-
ied at recent decade. The concept that was developed in such flows was maximal
exchange (Armi arid Farmer,1986; Farmer and Armi, 1986). The problem of the
water exchange through long strait with friction (Assaf and Hecht, 1974; Anati et
al., 1976; Oguz et al., 1990) yet is less well understood.



in this paper, we present the results of an experimental study of water exchange
through the narrow strait wiLh two-layer flow structure and net barotropic transport.
The simple model based on concept of maximal exchange is considered in Sect.2. The
experimental axrangement is described in Sect.3. We used a channel with geometry
similar to experiments of Anati et al., (1977) but with different measurement device.
The results of experiments are given in Sect.4.

2 Model

Following Maderich and Efroimson (1986,1990) we consider a simple bulk model for
a two-layer stationary water exchange through strait. The shallow and narrow strait
connects two basins maintained at different density pi and P2 respectively (p, < p2)
and net barotropic discharge Qf from basin 1 to basin 2 (Qf > 0). The rectangular
strait is length L, constant depth D and width A. The mean along strait depths of
upper layer and bottom layer are D1 , D2, respectively

D = D +D 2. (1)

The volume discharges in the upper (Qj) and bottom (Q2) relates to the mean
velocity in layers ul, u2 by Q, = ADjul, Q2 = AD 2u2 . The water balance of the
system is

Q1 + Q2 = Qj. (2)

It is common practice in such cases to use models based on a so called "hydraulic
control" principle, which requires that the internal composite Froude number G be
equal to a critical value G,. At small density difference ((P2 - P1)/P2 K< 1)

G2ý= F'+.F = G'. (3)

Here

9'D 3 A2 , 2 - gD-A2 , (4)

9' = g(p2 - Pl)/P2, g is gravity acceleration. In the short straits G, = 1 whereas in
the long straits with predominated friction effects parameter GC < 1.'

The system of equations (1)-(3) contains four variables besides G, and g'. To
close the system we used the condition of extreme water exchange in the strait, i.e.,
we supposed such layer thicknesses that the flow in the bottom layer is maximal

=0. 
(5)aD2

The second extremum (Q2 = 0) is; achieved ab the end of the range of possible values.
Flows Q, and Q2 are connected by (2), so Eq. (5) involves the extremurn either for
the upper flow. Taking a derivat~Lve of Eq. (3) with respect Lo D2 and using (5), we
have simple condition of maximal exchange

Q• _ D' (6)

Q2 D2

2



From Eqs. (3) and (6) taking into account Eqs. (1) and (2) we obtain explicit
formulae connecting thicknesses of layers and discharges with some morphometric
and hydraulic parameters of the strait and with independent components of basins
water balance

D, = 1D(i + rG;'), (7)

Q, = 1  Q(t + rG,.') 2 , (9)

4

Q2 = -¼GQm (1 - r-,, (10)
4

where Qm = S(g'D)112 , S = AD is a cross section of the strait, r QI/Q,,.
Following to approach of Maderich and Efroinson (1990) we accept a condition

similar to (3) for a long strait either, but the averaged along the strait the Froude
number G, should now be less than 1. Generally G, depends on the strait geometry
and possibly on another external parameters. It is easy matter to derive explicit
formula for G, in particular case Qj = 0. For a long sea strait the main balance in a
bottom layer is a balamce between baroclinic pressure gradient and bottom turbulent
friction. In the laminar laboratory analog of this strait with A < D the pressure
gradients balance side wall friction in the layers except the ends of strait

Tg( = 0u

ay-(g(-+g'7J) =. V(12

The coordinates x and y are taken along and across the strait respectively. Here
( is the surface elevation, n is the interface deviation, v is the kinematic viscosity.
Instantaneous local thicknesses of the layers 1H and H2 are defined by

11i = D, - 1 + C,, 2 = D 2 +q. (13)

Integrating (11),(12) across the channel and excluding ý we obtain

0112 12v HQ2 - H2 Qf (14)

ax A3g' (H - 112)t2 '

A using of the critical Froude condition at each ends of strait with Qj = 0

+ 2 =1. (15)
A•,D•_ ).3 A b(D2 + rj)3

is evident (Assaf and Hecht, 1974; Anati et al., 1977). Integrating (14) from 0 to L
and eliminating Q1, Q2 in (15) we have:

S-(1 -62), (16)"7
32(1 - 1S2)2(1 + 362) = 2(l - 62)3. (17)

33
62(1



Here 6 = i7(L) - •?(0), "7 = 12vL/(A 2'V/ ") is friction parameter. For a short strait
-y < 1, for an intermediate strait -y -_ 1 and for a long strait -y > 1. Some approaches
when Qf 0 0 were considered Maderich and Efroimson (1990).

3 Experimental arrangement

The experiments were conducted in a rectangular Plexiglass tank, 200 cm long, 17

cm wide and 40 cm deep (Fig.1). The tank was divided on two basins. These basins
were connected by shallow and narrow rectangular strait placed along front wall.
The two-layer water exchange was maintained by heating of small basin (length 33
cm) by electric heater placed near the bottom and by the cooling of large basin by
the tap water cooler. The cooling box was situated at the surface of the large basin.

T I iI ' '~ 40cn
26 cm1

.eater
200 cmn 17 ci

Fig.1. Schematic drawing of laboratory set-up

The three configuration of strait were used: short, intermediate and long. The
depth of strait D = 8 cm was not changed. The short strait was modelled by plate
with thickness L = 2 cm. The intermediate strait was length L = 60.5 cm and
width A = 2.0 cm. The long strait was the same length but A = 0.9 cm. The strait
and small basin were insulated. A barotropic flow was directed from heated basin to
cooled one. The constant flow rate was provided by using of the constant pressure
vessel. The outflow from large basin took place through the funnel at the surface.
The rate of outlow from tank was calculated with help of measuring vessel.

The temperature distribution in the strait was observed by the vertical profiling
in the ten sections with a thermistor probe attached to the traversing platform.
The platform can be moved along strait. The velocity measurements in ten sections
along stvalt werc- made ushig hydrogel-bubble technique ( Matsui et al., 1979). The
bubble generator was made by stretching a stainless wire (0.0027 cm in diameter) in
a vertical section of the channel. A proper electrical pulse was applied between the
wire as a cathod and plate on the bottom of channel as an anode. To diminish the
buoyancy effects at low speeds we selected the electric parameters for generation of
the small bubbles (pulse width 2 - 6 ms., voltage of 40 - 70 V). The pulse interval
was 0.33 - 0.66 s. The wires also were attached to a small amplitude vibrator to
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enhance conditions of the bubbles tailing. As a result of these measures the velocity
of the bubble rising was less 0.1 cm/s. The flash lamp with condenser was used as
a light source.

4 Results

A series of experiments was run for the short (y ; 0.1), intermediate (-y ý- 0.6)
and long ('y ; 3.0) straits. The barotropic flux Qf was varied systematically in
the range: 0 5 Q, -5 13.5 cm 3sec-' for short strait, 0 :5 Qr < 6.4 crn3sec-' for
intermediate strait, and 0 _5 Qf _< 3.2 cm 3sec-' for long strait. In the experiments
the buoyancy b, typically lay between 1.20 and 1.28 cnisec- 2 .

The longitudional distribution of the velocity and temperature in the long strait
for Qf = 0 are shown in Fig. 2. The temperature and current profiles consisted
of two homogeneous layers with a thin thermocline and shear layer. The heights of
the thermocline and zero speed changed almost linearly along strait. But the layer
of maximal temperature gradient was shifted downward relatively to the position of
the zero speed. This flow pattern was quite similar to Fig.10 Anati et al. (1977).
The presence of the net barotropic flow did not change qualitatively the picture of
currents for moderate Qj as seen from Fig. 3. The interface between homogeneous
layer was shifted downward but it shape and slope had not undergone the marked
change. The diminishing of the velocity in bottom layer causes the transformation
of temperature field at the cost of heat conductivity. The effect of "locking" strait
for bottom undercurrent can be seen at Qj > 3.2 cm3sec- 1 .

The comparison between the measured thickness of bottom layer and the local
Froude number

GL (18)
= A2bH' + A 2&,H.(

and computed ones from model is given in Fig.4. The figure shows a reasonable fit
the model to the data. The model however overestimates the slope of interface. The
most discrepancy between the predicted and experimental values GL at the ends of
the strait is due to the inertial eflects that have been neglected by the viscous model
and errors in the determination of zero speed points at the ends of the strait.

In Fig.5 the measured depth of the upper layer was plotted against the net
barotropic flow. The straight line G, = 1 corresponds to the model of maximal
water exchange (see Eq. (7)). The dependence of 2D 1 /D - 1 on Qf/Qm, for the
intermediate and long straights also is the linear function, i.e. the G. is an approx-
imtely constant. The value G, := 0.42 for long strait, that is in a good accordance
with the model prediction G, = 0.41 at Qf = 0. What this means is parameter G,
in a first approximation depends only on the strait.n morphometry.

The relation between the discharge Q1 and and averaged depth of the upper
layer D1 is given in Fig.6. Accoi~dingly to Eqs. (7), (9) the function (Qi/Q,,,)"/2 is
depends linearly on D1 /D for constant G,. The data is consistent with this relation
but measured disharges were less than predicted with G. calculated from Fig.5.

5
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5 Conclusions

The present study has produced the following results:
(1) The simple one-parameter bulk model of water exchange in the long narrow

laminar strait with net barotropic flow was proposed. This model was based on
concept of the maximal exchange.

(2) The results of the laboratory experiments on the water exchange in the short,
intermediate and long straits with net barotropic flow were consistent with model
but the measured baroclinic flows were weaker than predicted by the model.

(3) The single parameter of model G, in a first approximation was function of
the strait morphometry only that gives possibility to use this model with empirical
value of G, for the parametrization of water exchange through straits inl the models
of general circulation.
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Hydraulic Control Analysis of an Integrated Gravity Current Model

GUTTORM ALENDAL

Nansen Environmental and Remote Sensing Center, Bergen, Norway

A steady state gravity current model which incorporates entrainment and
friction is used to describe large scale gravity currents and channel flows.
When the model includes pressure effects from varying current thickness,
critical points occur when the current velocity is equal to the phase velocity
of waves on the interface. Some solutions have the possibility to pass from
super- to sub-critical flow, or vice versa. These solutions pass through a
hydraulic control point and the objective is to analyse the behaviour of the
solutions in the vicinity of such points.

Using a phase space in which the hydraulic control points occur as equi-
librium points, performing standard Taylor expansion to the first order,
the result is a system of autonomous differential equations with constant
coefficients that can describe the behaviour of the solutious for different
parameter regimes near a hydraulic control point. If an equilibrium point
in phase space represents a saddle point it is distinguished between three
different solution classes; solutions that approach the critical velocity but
never reach it, solutions that reach the critical velocity and obtain infinitely
large derivative, and the solutions (one from subcritical and one from su-
percritical) that reach the critical velocity exactly in the equilibrium point.

INTRODUCTION AND PROBLEM DEFINITION

Flows driven by gravity/buoyancy occur in many contexts both in the nature and in the
laboratory, see Simpson (1987) for examples. One approach that is often used to model
these events are integrated or bulic models, i.e., models which do not treat the interior
fluctuations explicitly but model the variables averaged over a cross-section of the current
(see for instance Smith, 1975; Killworth, 1977).

The steady state gravity current model is derived rigorously in Alendal et al. (1994) and
since the main objective is to study the solutions in the neighbourhood of the hydraulic
control point, the model will be stripped for the influence from salinity, temperature
and density variations. Further, the current is assumed to flow in a chaznel with given
width and inclination as function of the along stream direction, and rotational effects are
neglected. The remaining model equations then read: (subscript x means a/ax)

(pAu). = pgEwu, (1)

(p Au) = A g(p- p)(sin 0-- h) CpWU 2  (2)

These equations are the local steady state continuity and momentum equations averaged
over a cross-section, with normal vector in the along stream direction x, and with area
A. The quantities p, u, w, and h are, respectively, mean density and velocity over the
cross-section, and the width and thickness of the flow. The density of the ambient fluid is
denoted with P,. The right-hand side of Eq. (1) represents entrainment of ambient water
which is assumed to have no momentum The entrainment darameter, E, is usually



assumed to be dependent on the Richardson number, Ri = 9'hcosOu-2 , of the flow
(Christodoulou, 1986). The first term on the r.b.s. of Eq. (2) is the gravity/buoyancy
force while the last term represents the drag with the drag coefficient CD which may also
be dependent on the Richardson number (Alendal et al., 1994). In this study both the
entrainment parameter and the drag coefficient is, for the sake of simplicity, assumed
constant.

The input of energy in the model is due to gravity/buoyancy while friction and en-
trainment of ambient water with no velocity represents sink of energy. The h. term in
the gravity/buoyancy term occurs as a result of incorporating the effect from vaxiation in
current thickness on the pressure.

The area of the cross-section is proportional to the width and the thickness of the
current

A = awh (3)

where a is a proportionality parameter. Assuming that the width of the current (channel)
is given through constraints the system is closed and solvable.

Using Eq. (3) and substituting v = u2 into the system gives

Shv. + v h = v - hvf() (4)
2

Shv, + hh, = g'hsin 0 - Cdv (5)

where 9' = g(p - p,)p-' is the reduced gravity and

--p-,' f(x)= , Cd = (CD + P)/a0. (6)
pa, w

If the inclination angle, 0, is dependent on x and the entrainment is neglected, F = 0, the
model is similar, although differing in notation, to the one used by Pratt (1986) to study
flows over an obstacle. Further, the model is also similar to the more general model of
Wajsowicz (1993) with special choices for the friction and entrainment functions.

The system has critical points when u2 = 9', the phase-velocity of waves on the
interface between the flow and ambient water. When the velocity of the flow is larger
than the phase-velocity the flow is said to be super-critical, while for smaller velocities
the current is sub-critical. Solutions passing from sub- to super-critical or vice versa are
called hydraulically controlled and the points where these flows goes from one regime to
the other are the hydraulic control points (Turner, 1973).

Nondimensionalising using

v=v04, h=hoh, x=Lx (7)

with h0 = L and vo = u' = gho, where L is a characteristic length of the flow, gives the
nondimensionalised system:

S+ = - &ýuf(X) (8)

Sh +hhx = hsin9 - CdV (9)
2



Subtracting Eq. (8) from Eq. (9) gives

(Ii - U) T, = *Esin 0 - (Cd + r) -V + -•f (X). (10)

If the r.h.s. of Eq. (10) do not approach zero as U -* h the derivative of Ti will approach
infinity (positive or negative), or in other words the hydraulic control point is given when

V=h, hsin0-(cd+') +i C(x)=0 (11)

simultaneously. Notice that if the inclination angle and the channel width is constant,
0 = constant and f(x) = 0, a critical slope, sin0 =- C + F, is defined for which the flow
may freely go from sub- to super-critical alow, or vice versa. On the other hand if the
slope is not ctitical there is no hydraulic control solutions for the steady state model.
To analyse the solutions in the vicinity of hydraulic control points a phase space and a
new independent variable is introduced which transform the singularity to an equilibrium
point.

THE GENERAL ANALYSIS METHOD

Here follows a brief summary of the phase space analysis method. An exhaustive outline
of the method may be found in Bilicki et al. (1987) where it has been used on two-phase
flows. In Oien and Alendal (1993) the method was used on a model describing the heating
and acceleration of the solar wind.

The method can be used on dynamical systems of the general form

d
A(l). - = b(a , X), (12)

where A is a k x k matrix and b and a are k-dimensional vectors. Notice that the
coefficient matrix .4 is not dependent on the independent variable X. The system has
unique solutions in regions where A =- det(A) # 0 and by use of Cramers rule (see for
instance Anton (1984)):

do- N(o,, X)
d -A) i= 1,2,...,k, (13)dX 0a) (3

where Nj(a, X) is the determinant of the matrix resulting from replacing column i in A
with the vector b. Introducing the new independent variable (77) such that

d.x - A(o-), (14)
d,

it follows that

dad = dcr1 dx 4_ N(, z) A (u) = Ni(a, z), i = 1, 2,... , k, (15)

d77 dx dT? A(cx)

giving an autonomous system with k + 1 differential equations'

dx da-
-= =- N,(u, x), i =1, 2,..., k. (16)
dv7

3



Points in the k + 1 dimensional phase space, denoted 7 - (a, X), where A - 0 are called
regular points and only one solution pass through these points. Points where A = 0 are
called critical points and defines a k-dimensional manifold in phase-space which separates
the space into a sub- and a super-critical region. The normal vector to the manifold,
called the critical manifold, is perpendicular to the x-direction since A is not dependent
o- X. A theorem in Bilicki et al. (1987) says that if A = 0 and Nj = 0 for any j, then all
the other Ni's are zero simultaneously. This gives the following classification of points in
phase space:

1.Regular points when A f 0,
2.Turning points when A - 0 and N1 # 0 for all Ni,
3.Singular points when A = 0 and Ni - 0 for all Ni.

The theorem states that each of the manifolds defined by N1 = 0, i = 1,..., k, all
intersects with each other simultaneously as they intersects with the critical manifold
A = 0. This means that the physically acceptable solutions that pass through the critical
manifold passes in the manifold defined by the intersection between the critical manifold
and the manifolds defined by the Nis. Solutions going through a turning point in phase-
space are not physically acceptable solutions since at least one of the dependent variables
gain infinite derivative there.

To study the solutions in the vicinity of a singular point, T = T**, Taylor series expansion
in r- = -r** + S6r is performed. Truncated after the linear term this gives a linear system
with constant coefficients

d-g =& • VV(T**) = &"Y (17)
dX

where V' = [A, N 1,..., Nk] is the vector holding the dependent variables for the au-
tonomous system given in Eq. (16), and

Oak
.DA** j.- allk -

ax aol 19Uk
.7 = V ()= 8)(%-TOi .. OU .r (18)

is the Jacobian matrix evaluated at r = rtt.
Another theorem from Bilicki et al. (1987) assures that A = 0 is an eigenvalue of the

Jacobian matrix defined in Eq. (18) with multiplicity (k - 1). The remaining two nonzero
eigenvalues with their eigenvectors control the behaviour of the solutions of the linearised
system in the neighbourhood of the singular point. The eigenvalues of j are the roots of

4



the characteristic polynomial on the form

A(ki1) (A' - pA+ q) =0. (9

and the classification of the equilibrium/singular points is now given (Jordan and Smith,
1987):

Saddle point q < 0,
Node q>0, p2 -4q>O, (20)
Spiral or Center q> 0, p2 - 4q <0.

If a singular point is a center or a focus there is no possibility to find any solutions
passing through the point and further all solutions will eventually approach a turning
point. These solatiors are not physically acceptable unless the outlet of the channel is
reached befoie the turning point is reached. For nodes all solutions passes through the
singular point.

For saddle points the eigenvectors connected to the two non -zero eigenvalues span a two
dimensional subzpace in the (k+l) dimensional phase space. Solutions passing through the
singular point will, in the neighbourhood of the point, be directed along the eigenvectors.
If these solutions where to be calculated numerically the algorithm is as follows; Since
the singular point is a saddle point we know that the two nonzero eigenvalues are real,
distinct and with different signs. The corresponding eigenvectors, ej, i = 1,2, define four
directions in the phase-space (remember that if e, is an eigenvector then so is -ei). Taking
one siL-J step from the singularity in one of the four directions the ordinary differential
eqhation system is again regdlar and ordinary numerical integration can be performed.

THE CHANNEL FLOW PROBLEM

Returning to the gtavity current model, Eqs. (8) and (9), which written on the general
voctor-matrix notation in the previous section reads:

F h
.•d v 2 d [ rv - hv f(x)vd½ j Ix [1 h sinO(X) - C(21)

and according to b3e previous section

iv - hvf(v.) vN 1 -- =v {CQ vv+h (r--sinO(X) - h f(X))}
h sin0(k) -. Cdc h (22)

hhf h I' C' v fh(x)2, = h {h sin 0(-e) - -1 (%,-I + r - hf (x))}
1 hSin OWX - (Id 2

The c ttical points occur when
T (23)
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defining the critical plane, and the singvlar points when in addition

Cd + F - hdf(x,) - sin O(xc) = 0, (24)

as already stated in Eq. (11). Acceptable solutions passing through the critical plane have
to pass through points that satisfies Eqs. (23) and (24) simultaneously.

The eigenvalues of the Jacobi matrix, Eq. (18), are the roots of

S[,\2 2 pA+q] =0 (25)

where p=Ih, [3Cd + 1], 
(26)

2

q = Ihc 3[Cd - sin O(X) f(xc) - 3 [h3 -'(df(X.)) + (d sin O(Xj)j. (27)

Classification of the hydraulic control point is now given from Eq. (20).

SPECIAL CASES AND EXAMPLES

A Degenerated Case

A degenerated case arises when the c. ;h and the inclination are constant. Eq.
(24) then contains only constants and if tjt, .don is not fulfilled there is no possibility
for hydraulic controll solutions. If on the other hand the equations are fulfilled, defining
a critical slope, solutions can pass the critical plane everywhere. Notice that in this case
there is only one nonzero eigenvalue since q = 0. If either the entrainment parameter or
the drag coefficient are not constant, but for instance are dependent on the Richardson
number this is no longer true.

Constant Channel Width

If the inclination is dependent on X and the channel width is constant, f(x) = 0, then
Eq. (24) gives the position of the hydraulic control point.

Example. As an example the obstacle used by Pratt (1986)

sin O(x) = b,,X. (28)

may be illustrative. The singular point is located at

Xc -- b+r (29)
b..

showing that -ot only the friction moves the the hydraulic point downstream from the
top of the oi.-:,acle as stated by Pratt (1986), but also the entrainment is doing that. In
the notation of Eq. (19)

1 3
p = 1 (3Cd + ') q = bm (30)

2 4

showing that the hydraulic control point always is a saddle point as long as bm > 0.
6



Varying Channel Width

On the other hand, if the width of the channel is dependent on X, then Eq. (24) defines
a a curve laying in the critical plane which is a relation between the thickness of the
current and the X position for the hydraulic control points. In this case Eqs. (23) and
(24) are two equations with three unknown leaving one undetermined. It is possible to use
the freedom from the nondimensionalising to scale the current so that either the thickness
of the current or y, is equal to 1 for the dosited solution. It is then possible, at least for
saddlepoints, to integrate backwards to the inlet of the channel and find the initial height
and velocity needed in order to have the hydraulically controlled solution.

Example. Let the width of the channel be given by the function

w(X) = ax + b (31)

with the inflow at x = 0 and let the inclination be constant. This gives
f~)= a da (2

f ( = ax -+' d f(X) = (ax ±6)2 = f(x)2 . (32)

Scaling the flow so that h, = 1, the critical point x, is now given as the solution of

a + -Cd--O (33)

where c = sin 0 - (Cd + F). If e > 0 (< 0) there is net input (output) of energy in the
neighbourhood of the point. This gives the position of the hydraulic control point at

x = a (34)

Since the inlet was assumed to be at X = 0 negative x, cannot be accepted so in order to
have a hydraulic control point -ab- 1 < c < 0. From Eq. (26)

- (e - 2r) (35)
4

and the hydraulic control point is always a saddle point as long as E < 0, for e = 0 it is a
node.

f (x) constant and constant inclination

For this case Eq. (24) becomes

h~d + sin 0 - Q - FP= 0 (36)

and is only dependent on the thickness of the current. The location is undetermined and
has to be found through shooting techniques. The width of the channel for this choice of
f is given by

w(X) = wo exp (dx) . (37)

7



CONCLUSION

An integrated gravity current model has been simplified, neglecting salinity, tempera-
ture and density variations together with ro itional effects. This simplified model reduces
to well known equations for flows in open channels, with possibility for obstacles and vary-
ing width of the channel.

Using a phase-space method, the hydraulic control points transform into equilibrium
points. In the phase-space there axe solutions passing the critical plane in turning points
but these solutions have infinite derivative for at least one of the dependent variable
with respect to the original independent variable making these solutions not physically
acceptable.

It has also been shown that the hydraulic control point is not always a saddle point in
the phase-space.
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ONE KIND OF INSTABILITY FOR A FLUID WITH HEAVY PARTICLES

EXPANDED ABSTRACT

by G. I. Burde

Ben Gurion University, Jacob Blaustein Institute
for Desert Research, Sede Boker Campus, 84993, Israel

The subject of this paper is stability and wave motions,
originating from an instability, in a two-component fluid
consisting of a carrier fluid (gas) and solid particles dispersed
throughout the gaseous component and settling downwar.. As the
particles are treated as a passive scalar, affecting only the
density of the mixture, the instability arising is of an
Archimedian type [1] in the sense that the motion is caused by
buoyancy forces due to spatial variations of the concentration of
particles.

The ways in which suspended particles can influence the onset
of Benard convection were studied beginning from Scanlon and Segel
(2]. The effect of settling particles on the convective stability
of a horizontal layer heated from below was considered by

Dement'ev [3]. The stability problem of a two-component fluid
layer, when spatial variations of a second component are added to
the thermal gradient, has been examined in the series of papers
initiated by Stern [4] ('thermohaline convection', see review of
Turner (5]).

Our formulation of the problem differs from all the above
mentioned. it is assumed that a thermal stratification is absent
and the concentration of particles increases with height. In
general, the fluid in such a state is unstably stratified in the
sense that any perturbation grows with time, if dissipative
effects are absent. It appears that coupling between the
particles, distribution and gravitational settling can make such a
state stable even though viscocity and effects are

negligible. This result is obtained from the linear theory in
which the motion of the mixture is described by the system of the
Boussinesq equations and of the equation of continuity for
particles including the flux due to the gravitational settling of
particles, as follows

II



ac/8t + u.Vc = - V(- DVc + w cg/g)

where w gr is the terminal fall velocity of particles in gas (c
is the velocity relaxation time). Such an approach is a good

approximation if wr ¢ 1, where w is a perturbation frequency. The
more complicated formulation, incorporating the equations for two
interpenetrating continua, produces results which are
qualitatively similar to those obtained for the simpler one.

If the flow in a region bounded by the horizontal surfaces is
considered, it is natural to take the basic state to be a solution
of the governing equations which is independent of x, y and t and

has u = 0. but we will concentrate our attention on a somewhat

different situation. The point is that a formulation of the
problem mentioned above is not relevant to the case of dust

(airborne particles) fallout in the atmosphere. If a dust cloud

has been raised from the ground by an explosion or erupted from an

elevated source , it will fall a- a whole, preserving the initial

particles' distribution within it. The same situation arises if
the dust particles are involved into a high level atmospheric
stream (for example, by strong vertical wind velocities ahead of a
cold front over a desert region) and deposition from the stream

occurs far from the source region. It is natural for such
situations to take the basic state to be a solution of the initial
equations for which the particles' concentration is independent of

t in the coordinate system falling with the cloud at the terminal
velocity w . The equilibrium solution in the presence of diffusion
is dco/dZ = G = const, where Z is the vertical coordinate in the
falling coordinate system. If diffusion is negligible, as it is in
calm air when turbalence is absent, the equilibrium concentration

profile may have an arbitrary form co = F(Z).

The stability of the basic state is studied in the usual way
by superimposing small perturbations. As it follows from the

aforesaid, the formulation. of the problem which does not include

dissipative effects is of the most interest, the more so, as for
non-turbulent gas flows and particle sizes typical for atmospheric
fallout the impact of the terms with viscosity and diffusivity in
the stability is negligible. Then the linear problem for wave-like
solutions of the form

2



C = A exp[i(k-r - wt)], k = (k, 1, m) (1)

is reduced to a dispersion relation with the roots expressed as

W = mw ~l ± (1- R/R,) J

R ~2/ 2  22~2 2 2 2R = gGh /<I, R. = mih(k + 12 + m )/[4(k' +1')]

where h is a vertical scale and R is an adjustable dimensionless
parameter.

One can see that for R > 0 (G > 0) both two real roots and

two complex conjugate roots can occur. If no complex roots exist
then stable dispersive wave propagation occurs. However, if
complex conjugate roots exist: w = wr ± iwi then instability

arises. As R is varied, the sign of the subradical expression can
change and the system can switch, through a critical value of R,

from stability to instability. Thus, the condition wi = 0
determines a neutral stable curve . It should be emphasized that
w = 0 not only on the curve but also in the whole region below

the curve. This means that all this region corresponds to the
neutral stability as the dispersive wave propagation with no
growth and no decay takes place for any point below the curve.
Note, that on the basis of the general considerations, presented
by Gibbon and McGuinness [6], one can expect the existence of the
soliton-like nonlinear regimes for this type of instability.

The effect of nonlinearity on the initial state, which is a
harmonic solution of the form (.), is to cause a variation in the
amplitude in both space and time. This is due to the production of
higher harmonics, originating from the nonlinear terms, which
react back on the original wave. In accordance with the framework

of the multiple scales method one can define a set of Oslow" space
and time variables as

Zn = rnZ, Tn = Ct

an ose a so~l~ution of thiniial equations in1 the~ fo-no

power series expansion in v (the small p&rameter e determines how
far the system is from the neutral curve). The amplitude function
A in (1) is a function of the slow variables Zn and Tn and the
subsequent calculations are aimed at finding the evolution
equation for A. The O(e) problem is a restatement of the linear

3
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problem. Proceeding to the O(c 2 ) problem, one finds that the

Z -scale must be excluded as producing secular terms. In the O(c3)

problem secular terms are removed if the amplitude function

A(Z2, T,) satisfies the equation which is a type of nonlinear

Schr6dinger equation with space and time interchanged:

184/8Z + 6A/8T' -f PAIA' - 0
2 1

where the linear term has been absorbed in the first term. Thus,

the nonlinear stage of the instability represents waves with an

envelope in the form of solitary waves.
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Stably Stratified Flows in Meteorology
JCR Hunt, G Shutts and S Derbyshire

UK Meteorological Office, London Road, Bracknell, Berkshire RG12 2,Z, UK

In this paper we review three main ways that developments in the physical under-
standing and numerical modelling of stably stratified flows arising from recent research
are being applied to the practice of meteorology.

(i) The cause of stable stratification

The fact that the mean sta'e of the atmosrbaere is stably-stratified (in the sense that
the dry entropy has a positive vertical gradient) is not immediately obvious since the
absorption of solar radiation at the surface provides a strong destabilising influence. The
resulting vertical stratification is a balance between the destabilising effect of radiative
transfer and moist convective heat transfer. Here 'convective' is used in a generalised
sense and is associated with the upward transfer of heat (or moist entropy) along all
trajectorins originating in the boundary layer, whether or not they form part of a deep
cumulus circulation or frontal ascent in a developing depression. The horizontal scale
of the vertical mass transfer accompanying this moist convection is highly asymmetrical
since the buoyancy generating effect of latent heat release occurs primarily in ascending
air. The greawer proportion oC the atmosphere is therefore free of cloud. In regions
where active convection is taking place, there is a tendency for a suitably defined
'moist entropy' to be constant along angular momentum surfaces which are vertical

in the Tropics but have frontal slopes in middle latitudes. The mean thermodynamics
skrtte of the atmosphere is strongly constained by such processes and results in stable
stratification almost everywhere.

(ii) Parameterization in weather forecasting models

Numerical weather and climate prediction (NWP) models reduce the relevant partial
differential equations of physics and fluid mechanics to algebraic relations between
physical variables and phevomena effectively averaged over finite volumes (with vertical
dimensions ranging from I m n•ar the ground to 1 km at 50 km altitude, and horizontal
dimensions rwaging from 15 km in mesoscale models to 300 km in global models) and time
periods (from 102 secs to 10' sees depending on the atmosphe::ic phenomenon involved).
However, the basic relations for quantities such as mean velocity, temperature etc., require
information about other quantities, especially fluxes of momentum, heat, radiation and
water vapour, which cannot be derived formally (e.g., by a hiersarchy of 'closed' equations).
These averaged quantities cannot be modelled with complete generality (in terms of
closed sets cf equations) because the 'boxes' axe suffcientl~y large that significantly
different phenomena can occur. Nevertheless, in practical NWP models assumptions are

made that, for different classes of atmospheric conditions (uisually defined by average
quantities and their gradients, e.g., the Richardson number), characteristic phenomena
occur (or, in mathematical terms, eigensolutions of the governing equations slowly
changing in time) which can be analysed in such a way (often with idealised models)
that their net effects on fluxes and other terms in the equations can be represented
at ýhe mesh scale and time interval of the NWP models. This was essentially Luke

Howard's revolutionary concept in 1802 when he recognised that atmospheric motions
have definite patterns and that they axe manifested in distinct cloud types [1].

1l



Research is leading to new idealised models and thence representations (or param-
eterisations) of the characteristic patterns. One example is cumulus clouds in a moist
atmosphere whose temperature and humidity profiles are such that they are stable to
small perturbations but unstable to large perturbations; as a result of thermal convection,
characteristic plumes develop and clouds form with a common structure. Their net effect
is modelled by representing them as a single idealised entraining and detraining plume
in the middle of the grid box, so as to estimate their effects on heat flux, water vapour,
etc. [2]. Other examples of such models are scale dependent horizontal eddy viscosity and
in modelling lee waves caused by the drag of orography (se 'b)elow). Their improvements
should come from representing different characteristic phenomena occurring in the same
ox nearby grid box (e.g., lee waves and convection over mountains, the interaction of
cumulus and stratus cloud etc). The optimum selection of characteristic phenomena
for improving the models is usually statistical, decided on the basis of which modelled
phenomena improves the output best; the values of each change to the model is studied
systematically by calculating how rapidly certain features of the numerical predictions
depart from the measured changes of the atmosphere (e.g., [3]). The combination of
physical modelling and a systematic statistical evaluation is providing the highly effective
methodology for the steady improvement of models which all major NWP centres have
achieved over the past few years (as reviewed in [4]).

(iii) Forecasting issues

The interpretation of NWP is an essential part of the practice of meteorology, and
mainly the responsibility of forecasters. Their practice has changed substantially over
the past fifteen years from mainly relying on data and dynamical concepts (particularly
those of the Bergen school of fronts and air masses, and Sutcliffe's concepts of cyclonic
generation or dissipation through horizontal convergence and divergence), to comparing,
interpreting and correcting NW!P forecasts, with the aid of new kinds data that were
not available fifteen years ago, notably accurate satellite images and average values
(over rather large depths) of temperature and concentrations of certain atmospheric
constituents (water vapour, CO2 etc). Recent research is clearly having an influence on
current interpretation, particularly on phenomena occurring over length scales which the
models do not resolve2 for example, the air movement and precipitation bands within
stably stratified flow along fronts and the effects of wave growth on the speed of cold
fronts.

Forecasting offices are still experimenting with the use of potential vorticity compu-
tations over a wide field to infer the tendency of a low pressure region either to be 'cut
off' and dissipated or to be amplified and develop into a local intense cyclone - still
one of the major causes of errors in forecasts on short time scales of the order of 24
hours [5].

Another mesoscale phenomenon that is not accurately forecast is the 'break up' of
layers of strato-cumulus cloud; probably because the key processes occur in the interface
layers between a dry stable air and a moist turbulent layer within the cloud, [6]. There
may be other velocity fluctuations such as lee waves from mountains to add to •he
turbulence within the cloud. Whether or not these are significant, in a wecterly airstream
(say over the Welsh mountains) the break up of the cloud determines the temperature
and precipitation over much of the centre of England and the quality of the forecast.
This is a not untypical example of an 'upscale' phenomenon in meteorology. While

2



the phenomenon is not (or cannot, becaxie of computer- '. ..ss..az-csl be wmu.laLed. its
understanding by forecasters is unproving " a rmulh of detuied research of s;ratxfied
flow, mixing and turbulence.

One of the reasons for the wiam appbctou of mewotu)Ag to eunroameztal

problems and to the enrionmentally smautv oper&tic ot &o a-C & rad uspOet
has been the improvemenuL in uAmsaaszag aaqi mo4cawg oi s wopimw.c rocvamses
on the local scale. Theae phenoswmen A.C ,a gliy iaed b=A Ioa. a vanaUons in

surface elevation ('oeopaphby. the cover.ng of the gxor sd ,u:facc ;.. 'm:oughkxi? a&Ad
surface tempertasurw ie q., Lad-ea con€ras,. Fac e" =pb issing the outpt of large- or
meso-scale NWP &a"d the cgl of th evtwaL. •d-iusanal and field rmwrca studme
has led to improved for-casts an-d dctaiie4 local suLLcs : loca: w-.n4 je-r. lee waves.
slope winds), ptipat&Lion imscudmisg c., and temperasure. T-ýre i e stea•dy :o'e irom
providing this inforsuaoun from a comhbiauo- ai lazge scale NWP. or weaz.he= %ssucW.
plus simple formulae (e.g.. from the Forecd.asr,' Rtieeencc Handbook t to usan lage
scale dais plus smll computer codes e.g.. [S").

Some of the practical applications of meteorologcal research, a this length scale
have been in air pollution dispersion iad in wind energy. In both cases concepts resulting
from research on stably stratified flow over hill have been widely applied (notably, the
structure of the flow being divided into a aone where mtreawrlies pass ore.' the hill and a
lower zone where the streamlines na" round the hill, but see abjections to this approach,
[9]), leading in the firs' case to useful criteria as to when pollution from upwind sources
would impact on a hill or pass over or round, and in the latter problem to models for
estimating wind energy where there arc large downslope winds on the lee side of hills,
e.g., [10,11]. Recent research on these problems (especially the low Froud number 'cut
off' hill effect and lee wave generation) will now help improve the representation of
lee wave drag in large scale NWP [12]. Also, recent research on the structure of the
stably stratified boundary layer (e.g., [12,13]), turbulence and diffusion (e.g., [14]) have
led to more reliable and physically based methods for calculating the dispersion of air
pollution, including methods for comparing different models [15]. However, there remain
some significant uncertainties in these methods associated with the extreme sensitivity of
stably stratified boundary layer flows to small slopes, and to changes in surface roughness
and temperature (e.g., [16]).
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Abstract

An overview is given on direct numerical simulations and on large eddy simulations of
homogeneous turbulence under the impact of shear and stable stratification. We describe the
methods used and report on results of various studies. In particular, the vortex structure of
turbulent motions is discussed. Moreover, the dynamics of statistical mean quantities is
investigated. The mean variances are compared with experimental data. The turbulent diffu-
sivity tensor for passive species in a stratified shear flow is computed. Moreover, a simple
model is described which allows to estimate the vertical diffusivities for heat and momentum
for such flows when the vertical velocity variance or the dissipation rate are known.

1. Introduction

Stratified shear flows are importunt in the stratosphere, in the free stable troposphere, in
the stable atmospheric boundary layer (ABL) over cooled surfaces, and in the ocean. See
Hopfmger (1987), Fernando (1991) and Ealing (1993) for reviews. In this paper, we sum-
marize briefly some recent result- for ABLs and then concentrate on homogeneous stratified
shear flows, with uniform shear and stratification (without mean rotation), in the homoge-
neous case, all turbulence statistics are independent of the spatial coordinates but vary with
time. The paper summarizes the results of various recent numerical simulations, using either
direct numerical simulation (DNS) resolving the whole spectrum of motions up to the dissi-
pating scales, or using large-eddy simulation (LES), resolving only the main energy and flux
carrying motion structures while the small-scale turbulent transports are approximated by a
proper subgrid-scale (SGS) model. We will show that DNS and LES provide insight into the
vortex structure of such flows, its basic dynamnics, the vertical transport of heat and
momentum, and the anisotropic diffusion of passive species.

Turbulence in stratified shear flows depends strongly on the Richardson number (Rich-
ardson, 1920). Let S denote the vertical velocity shear and s the vertical potential temperature
gradient.

S = dU/dz, s = dOldz > 0, (1)

then the Brunt-Vaisilit frequency N and the gradient Richardson number Ri are defined as

N = (gs)12, Ri = N2/S2, (2)

Here, 5 is the thermal volumetric expansion coefficient, and g is the acceleration of gravity.
As summarized by Farrel & Ioannou (1993), for Ri < 0.25 somewhere in the flow, small
perturbances in inviscid fluid may grow exponentially. In general one expects that existing
turbulence decays with time when Ri > 0.25. In viscous flows this limit may be smaller. But
even for Ri = O(J ), transient growth of perturbations can be substantial, and may cause
overturning for Ri < 0.4. Turbulent motions get enhanced by shear at small Richardson
numbers. Hence, turbulent mixing may occur under non-stationary conditions at all Rich-
ardson numbers.



I
-2 4

The flow state depends also on the timescale of turbulence, e.g. C = '/q, where f denotes
the integral lengthscale and q = (2E)"• the velocity scale as a function of the kinetic energy
of turbulent motions E. (Alternative time scales may be defined in terms of the dissipation
rate , of kinetic energy.) Dimensionless numbers that relate the internal time scale to the
outer time scales S`1 and N-1, are the shear number Sh and the inverse Froude number Fi,

Sh = ST, Fi = Fr- = Nr, Ri = Fi /Sh2. (3)

The shear number determines the importance of mean shear relative to turbulent shear. In
strongly stratified flows, the inverse of the Froude number Fr becomes important. For Fi
greater than a critical value of about 3 turbulent mixing dies out (collapse of turbulence), see
Hopfinger (1987) and Etling (1993).

Turbulence in homogeneous shear flows has been measured by Rohr et al. (1988) in
salt-straified water. Reliable data for homogeneous air flows are available only for neutral
stratification (Tavoularis and Kamik 1989). The early measurements by Webster (1964) were
obtained from a wind-tunnel experiment at raither low Reynolds number with notable
departure from a quasi-steady state.

Homogeneous stratified shear flows have been inveztigated by DNS in Getz et al. (1989),
Gerz and Schumann (1989, 1991) and Holt et al. (1992). They investigated the flow
dynarmics as a function of Richardson numbers in between zero and 1.32. On present com-
puters, such simulations can be performed on grids with typically 1283 grid points. For such
grids, DNS is restricted to a Prandtl number of order unity and to a turbulent Reynolds
number, based on root-mean square velocity fluctuations and Taylor's microscale, of less than
about 50. For atmospheric flows, much larger Reynolds numbers are of interest. For this
reason, the DNS method has been extended into a LES method by Kaltenbach et al. (1994).
This extends formally the Reynolds number to infinity. However, the range of resolved scales
is still limited by numerical resolution.

With respect to turbuience in tho ABL, most previous studies concentrated on the con-
vective and the neutral cases (Schumann, 1993). For comparison of various LES codes to
these cases see Nieuwstadt et al. (1993) and Andr6n et al. (1994). The stable ABL is much
more demanding becadse of smaller turbulence scales and the tendency to turbulence col-
lapse. Mason and Derbyshire (1990) showed that LES of the stable ABL is possible, giving
results broadly similar to observations, and supporting the local scaling arguments of
Nieuwstadt (1984). Coleman et al. (1992) found similar results in DNS of a stable ABL at
moderate Reynolds number. Mason and Thomson (1992) raised the important issue of sto-
chastic backscatter. They showed theoretically that the subgrid parametrization should be
stochastic, and that this substantially improved LES performance in the neutral surface layer.
Recently, Brown et al. (1994) extended that work applying LES with stochastic backscatter
to the stable ABL. The forcing causes more turbulence and a deeper ABL and better agree-
ment of the veiocity profile gradients with observations. For strong stratification, when the
turbulence scales with the local fluxes, the turbulence statistics of the ABL become directly
comparable to results from homogeneous flows.

Since DNS and LES compute the details of the three-dimensional motions, at least in the
energetic scales, they can be used to study the vortex structure and the related transports, as
will be explained in chapter 3.1, based on the work of Rogers & Moin (1987), Gerz (1991),
Gerz et al. (1994) and others. For related discussions of other stratified shear flows, see, e.g.,
Lesieur (1993) and Staquet (1993).

Turbulent transport in stably stratified shear flow is strongly anisotropic due to forcing
of down-stream turbulent motions by shear and conversion of kinetic energy of vertical
motions into potential energy by buoyancy forces (Richardson 1920). As a consequence,
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passive species within the flow are mixed by the turbulent motions much stronger in the
horizontal directions than in the vertical. The relation between fluxes and gradients is
described by the turbulent diffusivity tensor which is anisotropic and asymmetric in general.
The diffusion tensor has been measured for neutral homogeneous shear flows in a wind
tunnel by Tavoularis & Corrsin (1985) and computed using DNS by Rogers et al. (1989).
For smatified turbulence, the diffusion tensor has been evaluated from DNS and LES (Kal-
tenbach et al., 1991, 1994), as will be summarized in this overview.

With respect to practical diffusion problems in stratified shear flows, the vertical diffu-
sivity component is the most important one. For diffusion from a linear source, a Gaussian
plume model (assuming a constant but anisotropic diffusivity tensor DO) results in second
order moments of the concentration field

aI = 2t(D33S
2t2I3 + D 13St + Djj), 013 = 031= 2t(D13t + 2D33St), CY33=2tD 33, (4)

as functions of time t (Konopka, 1994). This shows clearly the importance of the vertical
diffusivity D33 dominating horizontal dispersion when D3s2 S2 > 3D,1.

Simple relationships are required to estimate the magnitude of the mixing properties.
Such relationships have been deduced, mainly for strongly stratified atmospheric and oceanic
flows, on the basis of the energy budgets using simple closure assumptions for stationary
flows, see, e.g., Itsweire et al. (1993). The present paper summarizes a simple model which
takes into account the deviation from stationarity and applies to both stratified and unstrati-
fled shear flows.

2. The numerical method used for DNS and LES

The numerical method has been described in detail by Gerz et al. (1989) and Kaltenbach
et al. (1994). It simulates the turbulent flow in a cubic domain, see Fig. 1, with side-lengths
L. The mean velocity (U, 0, 0) and the mean temperature 8 have uniform gradients in the
veriical coordinate z while being constant in the two other directions. All mean gradients are
kept fixed in time. The turbulent fluctuations relative to these mean values are u1 = (u, v, w)
for velocity, and 0 for temperature.

Ac~z 0(z)) C2Y

Fig. 1. Computational domain and mean profiles (Kaltenbach et al., 1994).

Shear imposes a problem with respect to the boundary conditions. The r. 'a choir"-
of boundary conditions in DNS of homogeneous turbulence is periodi e! sp•.e
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directions. However, in the presence of shear a field which is initially periodic in the vertical
direction soon becomes non-periodic. Thus the common periodicity condition cannot be used
in that direction. Rogers & Moin (1987) and Holt et al. (1992) applied a method using
time-dependent coordinate transformation which corresponds to a Lagrangian reference
frame, so that the flow may be assumed to be periodic in the direction of the transformed
coordinate. This makes it possible to apply Fourier-spectral approximations of the fields with
respect to this coordinate. The disadvantage of this approach is the need for remeshing at a
frequency (1/2) dUldz, which causes interpolation errors of the aliasing type. We use the
alternative approach, where the equations are discretized in the Eulerian reference frame
using the so-called "shear-periodic" boundary condition (Schumann 1985). This condition
assumes periodicity in a direction which varies as a function of time. It corresponds to con-
tinuous remapping by applying horizontal periodicity and avoids interruptions at discrete
times. This type of boundary condition is not applicable to Fourier spectral approximations
in the vertical but can easily be implemented in a finite difference scheme. Both approaches
produce very similar results (Holt et al., 1992).

The motion fields follow the continuity equation for an incompressible fluid with con-
stant density p, the equations of motion including buoyancy due to density fluctuations and
gravity g in the Boussinesq approximation, and the conservation laws for heat and mass as
a function of spatial coordinates x, = (x, y, z) and time t. The density fluctuation is a linear
function of temperature with a constant volumetrical expansion coefficient P3.

In the study of Kaltenbach et al. (1994), the SGS turbulent transport is modelled using
turbulent diffusivities, the so-called Smagorinsky model,

v,= (csGsA) 2(2S~OSji) 1/,y, = vJPrss,. (4)

for velocity and temperature, respectively. Here, Sy = aujaxj + auJ4 is the resolved velocity
deformation tensor, c, s = 0.17 is the Smagorinsky coefficient, and Prs~s is the turbulent
Prandtl number of SGS motions. The velocity deformation tensor is evaluated excluding the
mean shear dU/dz in order to avoid unrealistically strong damping for decaying turbulence.
In fact, this model is justified theoretically only for locally isotropic turbulence where the
local deformation induced by turbulence is large compared to the mean shear. In this sense,
the mean shear should be negligible. The value of the Smagorinsky coefficient is based on
the inertial subrange theory as described in Schmidt and Schumann (1989). The same theory
gives Prsas = 0.42, but larger values are expected for stable stratification (Schumann 1991,
Canuto and Minotti 1993). Also, backscatter causes a larger value (about 0.6 to 0.7 for
neutral stratification), see Mason & Thomson (1992).

It should be noted that simulations with 1281 grid points do not yet resolve the inertial
subrange. As a consequence of deviations from local isotropy, the SGS shear number
ShsGs = S•ul: is of order unity. In the inertial subrange, the shear number scales with Ax•,
Hence, a reduction of Shxss by a factor of ten would be desirable, but this requires about 5.6
times more grid points or 1000 times more computer power.

Kaltenbach et al. (1994) compared DNS and LES results using this Smagorinsky model."Th,-v found that LES and DNS give the same results for weak stratification, when the con-
:. U molecular viscosity of the DNS is set equal to the initial mean turbulent viscosity of
the LES. Hence, a LES is nothing else than a DNS with spatially and temporally variable
viscosity. In the present cases, the spatial variability of the SGS viscosity is small, as also
found by Mdtais and Lesieur (1992) for unsheared homogeneous turbulence. However, LES
energy spectra decay more slowly than DNS spectra at high wavenumbcrs. Moreover, in LES
the viscosity adjusts to the decaying turbulence at the large scales, see Fig. 2. Therefore, LES
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gives a better approximation than a DNS at a given resolution for studies of high Reynolds
number flows and allows for a wider range of Richardson numbers.

.000015 -

.000010 ,

.000005 's
0 3 6 9 Si 12

Fig. 2. Mean turbulent viscosity V, of LES for various models and molecular vis-
cosity v of DNS versus shear time St (Gerz & Palima, 1994).

Gerz and Palima (1994) tested variants of two SGS models, one based on the first-order
model using a budget for the SGS kinetic energy (as in Schumann, 1991) and the other based
on Smagorinsky's closure. Tests with grid sizes of 643 showed that the details of the SOS
closure are not critical and become even less important when resolution is increased. Pro-
duction and dissipation of SGS energy are the two largest terms in the energy budget. The
Smagorinsky model simply assumes that they are equal. For Ri = 0.5, the time tendency of
the SGS energy is rather large, and this explains some differences in the effective viscosity,
see Fig. 2. We have also tested the code with a new stochastic backscatter model (Schumann,
1994b). For isotropic turbulence, the effect of such forcing is very small. We are still
working on testing the backscatter model for other cases.

3. Examples

3.1 Vortex Strucý -re and Microfronts

Structures in turbulence are often viewed as regions of strong coherent vorticity (Lesieur,
1993) and zones of concentrated field gradients, sometimes called microfronts (Gerz et al.,
1994). In shear flows without inflection points (in contrast to shear layers), horseshoe and
hairpin structures of fluctuating vorticity have been found in unstratified boundary layers but
also for hoIgncous shear flows bot.h w _ n% ri eutrally (Rogers and Moin, 1987) and weakly
stably stratified situations (Gerz, 1991). Horseshoe-shaped vortex structures are present in
flows with low to moderate Reynolds numbers, whereas hairpin-shaped vortices typically
occur in high Reynolds number flows with large shear numbers.

As sketched in Fig. 3, horseshoe vortices form and decay transiently in four steps: 1.
An initial disturbance due to vertical motions forms vertically distorted vortices. 2. The
vertically deflected vortex curves get rotated by the mean rotating flow. 3. Stretching of the
structure occurs strongest by the mean strain when they pass 450. 4. Further rotation by the
mean rotation reduces the inclination angle until the vortices get dissipated. Gerz (1991)
found that the strongest vorticity is distributed around id = 25' in a stratified shear flow with
Ri = 0.13, but that most of the coherent horseshoe vortices are found at angles of approxi-
mately 360 as in unstratified shear flows (Rogers and Moin, 1987), see Fig. 4.
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Fig. 3. Schematic illustration of the creation of horseshoe eddies (Gerz et al., 1994).
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Fig. 4. Frequency of inclination angle of vortex vectors relative to downstream
cooordinate. a) Ri = 0.13, b) Ri = 1.32 (Gerz, 1991).

In wall..bounded shear layers the mean velocity profile is curved. This causes a preference
of horseshoe vortices with "head-up" orientation such that the curved part (the head) of the
horseshoe forms in the outer region of the boundary layer whereas the legs of the horseshoe
stay closer to the wall. In contrast, head-up and head-down horseshoes form at equal fre-
quency in homogeneous turbulence with constant shear.

The flow in between the horseshoe legs is very efficient in transporting fluid and related
momentum, heat, and other fluid properties. In between the legs, head-up horseshoe vortices
pump fluid upwards, while head-down vortices pump fluid downwards. As shown by Gerz
et al. (1994), see Fig. 5, this causes the formation of microfronts with strong gradients of the
transported fields in the direction normal to the horseshoes. In a thermally stratified fluid,
at moderate Richardson numbers, head-up vortices transport cold fluid upwards and hence,
cause cold miciofronts, whereas head-down vortices transport warm fluid downwards caus-
ing cold microfronts.
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Fig. 5. Sketch of two horseshoe vortices forming a pair (Gerz et al., 1994).

The microfronts represent also regions of suong shear with spanwise vorticity. When the
Reynolds number is high enough these vortex layers get dissipated slowly and may reach
stronger vorticity than the horseshoe vortices. Such layers of maximum vorticity magnitude
have been observed by Gerz et al. (1994). The layern are relatively thin vertically and have
largest extent in the inclined downstream direction.

Collision of fluid lumps in between adjacent head-up and head-down horseshoe vortices
cause smaller scale fragments which may cause counter-gradient momentum transfer, see
Fig. 6. In moderately stably stratified flows, this collision of fluid lumps of different buoy-
ancy also causes counter-gradient heat tansfer at small scales (Gerz, 1993, Gerz and Schu-
mann, 1994). This provides a mechanistic explanation of this phenomenon which supple-
ments energetic considerations as in Schumann (1987).

At very sutong stratification, horseshoe vortices do not form. Instead, Gerz (1991) found
horizontally large but vertically thin sheets of maximum vorticity, see Fig. 7, which are
inclined at rather small angles, see Fig. 4. Such sheets of vorticity are also found, with
* = 0', in simulations of strongly stratified unsheared turbulence (M6wis and Herring, 1989).
Staquet (1993) shows that the vortex part of such flow3 interacts strongly with wavy motion
parts.
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Fig. 6. Illustration of the collision of fluid lumps and the resultant uransport of
momentum and heat by smaller scale collision products in neutral (left) and strat-
ified (right) shear flows (Gerz & Schumann, 1994).
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Fig. 7. Vortex structure at strong stratification as indicated by vorticity vectors in

a plane inclined by 6 = 120 relative to the horizontal. Ri = 1.32.
32 Dynamics and Diffusion in Homogeneous Strapified Shear Turbulence

LES of homogeneous turbulence for neutrally and stably stratified shear flow at gradi-
ent-Richardson numbeis Ri in between zero and one have been performed by Kaltenbach et
al. (1994). They investigated the dynamics and transport properties of such flows. For
Ri <•0.5, the computed normalized variances and covariances are within the range of data
of a large set of measurements in laboratory and atmospheric flows, see e.g. Fig. 12. Also
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the growth rate, the shear number, and the shape of spectra agree generally well with cor-
responding experimental observations. For neutral stratification, the turbulence grows about
exponentially with time, see Fig. 8a. approaching a constant shear number of about
Sw'2 =_-2, and a growth rate Go = P/E = 1.54 ± 0.05. The state of turbulence changes very
slowly near a stationary Richardson number of about 0.13. For Ri Ž- 0.25, both the knetic
and the potential energy decay with time. For 0.25 <Ri <0.5, the turbulent flow state
becomes self-similar in the sense of approaching constant r.ormalized flow statistics, as for
example in Fig. 8b, after a shear time of about 6 when the initial value of the inverse Froude
number is small. For Fi greater than a critical value of about 3 turbulent mixing dies out as
observed in experiments, see e.g. Ivey and Imberger (1991). In this case the final statistics
depend on the history of mixing in the past fully turbulent regime.

Ekin. Ept Po

3 Ekin I-
----------- '-------------- .3

1E-4 . /-
- --------------

6 9 12 0 6 9 12
St St

Fig. 8 a). Kinetic energy versus time in shear units for various Richardson numbers
Ri= _ _ 0, --- 0.13, _ _ _ 0.25, .... _. 0.5, .... 1.0. b) Ratio of
potential to kinetic energy versus shear time, for the same Ri-values (Kaltenbach
et al., 1994).

For analysis of the turbulent transport of passive species, the simulations treat three
passive species with uniform gradients of mean concentrations C in either vertical, down-
stream or cross-stream direction, see Fig. 1. From the results, the full diffusivity tensor has
been evaluated by relating the computed turbulent fluxes of concentration fluctuations c with
the given mean gradients,

Uic =-,j .(5)

Mean values of D4oD22 for different Ri, as obtained by the LES, are presented in Fig. 9.
This figure also contains the results obtained by Rogers et al. (1989) from DNS for neutral
shear flow ant; measurements of Tavoularis and Corrsin (1985). The dashed curves represent
the results from a second-order closure (SOC) model. For neutral flow, D11 is about three
times larger than D3., and D•3 is roughly half the value of D22. This is a consequence of
anisotropic velocity fluctuations and shear. Both off-diagonal components are negative and
D 13 < D3, < 0, as can be explained by SOC models. For increasing stratification, the vertical
diffusivity D3 3 becomes much smaller than the horizontal ones because of buoyancy sup-
pressing vertical motions. The differences between downstream and cross-stream diffusivities
become smaller. The asymmetry of the tensor components depends strongly on Ri. DA
changes sign at Ri = 0.2 because buoyancy contributes more strongly than gradient fluxes to

I
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the production of vertical fluxes of a tracer with downstream mean gradient. The SOC model
accounts for the given anisotropic Reynolds stresses and roughly describes the same trends
but gives much less anisotropy at strong stratification, presumably because of neglect of
anisotropic length and time-scales as defined by Tavoularis & Corrsin (1985).

3

----------------------------

0

.0 .1 .2 .3 .4 .5
Ri

Fig. 9. Diffusivity tensor versus Ri. Full line with error bars from LES results. For
Ri=0, results from Rogers et al. (1990) are included. Stars represent data of
Tavoularis & Corrsin (1985). stars. Dashed curves from SOC model. (Kaltenbach
et al., 1994).

3.3 A model for vertical diffusivites of heat and momentum

In order to estimate vertical diffusivities as a function of Richardson number, for given
dissipation rate E or for given vertical velocity variance w' = w2 , Schumann (1 994a) and
Schumann and Gerz (1994) deduced a simple model. As a consequence of the budget of
kinetic energy the vertical diffusivities for momentum K., and heat Kh =-D33 are related to
shear S = dUldz, the Brunt-Vaisalti frequency N and the dissipation rate F by

S= EG (6)m m 2 crf - 1-RijG

RýG.
K N= ch = 1-RRiG" (7)

The coefficient ch is often quoted as the "mixing efficiency" (see Iltsweire, 1993). Here,
C = P/(e + B) is a measure for the growth rae of kinetic energy due to shear production
P = - •--WS, dissipation e and buoyancy destruction B = PgwO; G > 1 for flows in which shear
production dominates as in neutral shear flows, G = 1 for stationary turbulence near a "sta-
tionary Richardson" number Ri = Ri,, and G < 1 for decaying turbulence at strong stratifica-
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tion. The flux Richardson number Rif= RilPr, = B/P enters as a function of Ri and the tur-
bulent Prandtl number Pr, = K,.IKA. For closure, the model assumes a linear relationship
between dissipation, shear and vertical velocity variance,

S= Asw' 2S, (8)

with As as an empirical -odel coefficient (equal to the inverse shear number). This model
looks similar to classical dissipation closure models when written as E = Asw' 3/ , but fixes
the mixing length as 1. = w'IS. This appears to be natural for strongly sheared flows. Hunt
et al. (1988) suggested that such a model gives a good approximation also for stratified flows,
and our results, see Fig. 10, support this relation for 0•< Ri < 1.

As 3

0.6 Cb 0

o -
0.4-•o

0.2

0 0.2 0.4 0.6 0.8 1.0
Ri

Fig. 10. Dissipation scaled by shear and vertical velocity variance, As =&I(wS),
versus gradient Richardson number Ri. Data of Rohr (1985) in salt-water (circles)
of Tavoularis and Karnik (1989) in a wind tunnel (full circle with error bar), and
the LES results (stars). Square dot indicates boundary layer estimate of Hunt et al.
(1988). (Schumann & Gerz, 1994).

The turbulent Prandtl number (see Fig. 11 a) and the growth rate of kinetic energy (Fig. 1 Ib)
are specified by means of some interpolation functions of Richardson number,

Prr = Pr4 exp[ - Ri/(PrIfOJ)1 + Ri/Ri_., (9)
0 = o" 'iRi01). (10)

Model coefficients are determined from the LES results of Kaltenbach et al. (1994) and
laboratory measurements of Tavoularis and Karnik (1989) for neutral stratification in a wind
tunnel, and from Rohr et al. (1988) for stratified shear turbulence in a salt-water tank (data
tabulated in Schumann, 1994a). The coefficient values are As = 0.5, Pro = 0.98, Rif- = 0.25,
Go = 1.47, Ri, = 0.13, for air, and slightly different values for salt-water, see Schumann and
Gerz (1994).

When comparing mixing properties in the atmosphere and in the ocean, one has to note
the rather large molecular Schmidt number of salt diffusing in water (about 500) while the
corresponding molecular Prandtl number of thermal diffusion in air is about 0.7. At high
Reynolds numbers, one generally expects that the large scale turbulent motions become
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independent of the Prandtl number, at least for neutral stratification. However, for strong
stratification, the vertical diffusivity is limited by small-scale mixing once the available
kinetic energy is consumed to provide the potential energy required for vertical displace-
ments. Such small-scale processes will depend on molecular diffusion.

Prt G ...

2.0- 2.0- 0

:2 / \\G1.5 - 1.5-

/I

1 0 \
0. 0D

R. 10 00P

0 0 0
0 06

0.5 0 0.5 0*N
00

0 -r- -- -- ,0
0 0.1 0.2 0.3 0.4 R10.5 0 0.1 0.2 0.3 00.4 Ri0.5

Fig. 1I a) (left). Turbulent Prandd number Pr, = K/IK, versus Ri. Symbols as in
Fig. 10. The full curve depicts the interpolation for air, the dashed curve for salt-
water. b) (right) Growth factor G = P/(B + e) versus RL (Schumann & Cerz, 1994).

The results of the model compare well with data from laboratory experiments in air or
salt-water, with measurements in the ABL, and in the stable troposphere, and with results
from the numerical simulations, see, e.g., Fig. 12. It should be stressed that this model applies
only for approximately homogeneous turbulent flows at high Reynolds numbers under con-
ditions of equilibrium between kinetic and potential energy, i.e, in the absence of ctrong
gravity wave oscillations. Further analysis (Schumann & Gerz, 1994) shows that the present
model also describes the break-down of mixing for Fi > 3, as in Ivey & Imberger (1991).
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Fig. 12. Stress coefficient cc. =-"w-/w' versus Ri. Symbols as in Fig. 10. Full

square with error bars: Nieuwstadt (1984). (Schumann & Gerz, 1994).

4. Conclusions and Outlook

We have described various results obtained by DNS or LES of homogeneous turbulence
in incompressible stably stratified shear flows. It has been shown that the simulations give
insight into the vortex structure of such flows, allow to compute mean statistics of flows and
their temporal dynamics, and give quantitative information on the diffusivity tensor and the
vertical transport of neat and momentum.

We found that the LES and DNS give very similar results for weak stratification when
the constant molecular viscosity of the DNS is set equal to the mean turbulent viscosity of
the LES. At strong stratification, the LES resolves a wider range of energetic scales and gives
thus a better approximation to high Reynolds number turbulence than a DNS with the same
grid numbers. The more energetic motions in the medium wavenumber range cause the
inverse Froude number to grow less quickly so that mixing persists longer. Hence, the LES
results depend less on flow history than the DNS results. Finally, the LES adjusts its SGS
diffusivities to the growing or decreasing level of grid-scale turbulence energy. This makes
the LES method superior to the DNS for studies of high Reynolds number flows and for a
wider range of Richardson and Froude numbers.

However, grids with about 128' grid points are much too coarse to resolve the inertial
subrange of turbulence. Therefore, the results for small-scale properties depend on the details
of the SGS model. For the future, within about a decade from now, one may expect that
simulations will become possible with an order 1000 grid points in each coordinate direction.
In view of the present developments of computers, such simulations require algorithmns
suitable for parallel computers. Such grids would make it possible to resolve scales truely
within the inertial subrange for which the SGS models become much more reliable.
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With respect to atmospheric turbulence in the free troposphere and above, it is probably
very important to account for the large-scale anisotropy of such flows with much larger
horizontal than vertical scales. An important topic here is the formation of turbulent spots
due to locally overturning waves in an otherwise strongly stably stratified fluid. Such over-
tuniing waves often result from upward travelling gravity waves with srtain horizontal
phase speeds Lhat interact with the mean flow at critical levels where the mean flow spced
equals the phase speed of the waves. Simulation of such flows requires to prescribe a suitable
gravity wave forcing at the bottom boundary and a non-reflective boundary condition at the
top of the domain.

(a) . (b): ___

"0.0 ' --

0.00 0.78 x 1H 01o.5o00 0.78 x/H 1.56

Fig. 13. DNS (left) and LES (right) of a breaking gravity wave at a critical layer
(Dbmbrack & Schumann, 1994).

An example of such a flow is given in Fig. 13. It shows the flow field in a stably stratified
fluid layer with uniform shear (zero mean flow) where gravity waves of zero phase speed
are induced by a lower undulated surface. We clearly observe the turbulence layer caused
by breaking gravity waves at and below the critical level (D6mbrack and Schumann, 1994).
However, details of this study are beyond the present overview.

Acknowledgements. I thank T. Gerz, A. D6mbrack, H.-J. Kaltenbach, and J.M.L.M. Palma
for the fruitful cooperation from which the results shown in this paper resulted.
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ABSTRACT

The vertical motion of fine particles suspended in aquatic systems is affected by gravitational
settling, turbulent diffusion and the physicochemical characteristics of the particulate matter. These
particle suspensions can lead to stratification which presents similarities to other density stratification
phenomena. The leading difference between particulate and dissolved matter suspensions is that solid
particles can aggiegate and settle. Depending on the balance between density gradient and shear
production, certain regions along the water column may become unstable leading to strong mixing and
homogenization of those regions. This instability could create steeper density gradients between the
homogenized region and its surroundings that would lead to the appearance of a step-wise density
profile. Based on the nonlinear, one-dimensional advection-diffusion equation, the microstructura
phenomenon is explained using the sufficient condition for interfacial Instability in shear stratified flows
(Rl, < 0.25). The analysis is verified by solving the governing equation numerically and observing a
microstructure generation along the vertical density profile.

INTRODUCTION

Understanding of the suspended sediment concentration profile is very important for estimation
of sediment discharge and contaminant transport in aquatic ecosystems. One of the earliest studies
on the vertical distribution of suspended granular material was done by Rouse (1937). His analysis
indicated that the concentration is always higher near the bed and it decreases toward the water
surface. He also pointed that the concentration profile tends to be more uniform for smaller particle
size (i.e., low settling velocity) or for higher turbulence level (i.e., high shear velocity). The original
Rouse equation was later improved to account for the difference between the eddy viscosity and
turbulent diffusion coefficients (Einstein and Chien, 1954). The density profile predicted by these
theories was smooth and continuous. Also, these early models did not account for any particle
aggregation effects; the fall velocity was a function of the particle diameter but not of the suspended
sediment concentration. Recent experimental and field data are supporting the fact that the dynamics
of cohesive sediment suspensions resemble the behavior of other density stratified systems, i.e., those
caused by temperature or salinity. Field observations of tidal channels along the west coast of Korea
showed interfacial waves and Kelvin-Helmholtz billows occurring on the suspended-sediment-related
density gradient or lutocline (Adams, at al., 1990). Laboratory experiments conducted on soft, high
concentrated bottoms revealed instability patterns resembling second-mode Holmboe waves
(Winterwerp, et al., 1993). Computer simulation of lutocline instability and growth was accomplished
by using a multi-layer vortex sheet model (Scarlstos and Mehta, 1993). In addition, density
microstructure profiles have been frequently observed to "ccur in muddy estuarina systems in U.K.
(Kirby, 1986; Leuttich, at al., 1993). A microstructure model for suspended sediment with negligible
settling effects was developed by Scarlatos and Mehta (1990) based on the work on salinity .

microstructure by Posmentier (1977).
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The phenomenon of microstructure has been extensively documented and studied for

temperature- and salinity-induced density stratification In the oceans (Woods, 1968; Turner, 1973;
LeBlond and Mysak, 1978; Dera, 1992). These quasi-homogeneous density steps can vary in
thickness from few centimeters to tens of meters with lifetimes ranging from tens of minutes to hours
(Tait and Howe, 1971; Monin and Ozmidov, 1986). There are various theories and models developed
for explanation of the generation of microstructure profiles. Woods and Wiley (1973) suggested a
model where a step-wise profile was generated by vertical patches of billows. McGorman and Mysak
(1973) modelled oceanic microstructure by using a two-dimensional internal wave equation with a
randomly varying Brunt-Vaisalb frequency. Eriksen (1978) coupled an internal wave model with a
"passive" fine structure model. McEwan (1983) explained local mixing in stratified system by
comparing the potential energy gained through stratification to the kinetic energy lost in motions on
the scales of the mixing processes. Koop and McGee (1986) experimentally showed the overturning
of internal waves in continuously stratified shear flows. Gregg (1987) explained ocean microstructure
using diapycnal fluxes of salt and heat. These are just few of the many studies on microstructure.
However, there are still some remaining questions regarding the onset, growth and timing of
microstructure generation.

This paper is focused on the microstructure developed in systems where stratification is caused
by suspension of fine particulate subject to free settling, hindered settling and turbulent diffusion. The
velocity profile is time-independent and is considered to remain unaffected by density changes. The
phenomenon is mathematically described by a nonlinear, one-dimensional advection-diffusion equation.
The eddy-diffusivity is taken as a function of the suspended sediment concentration and velocity
gradients, while the settling velocity depends on the concentration.

GOVERNING EQUATIONS

Based on the coordinate system, density stratification, and flow conditions as presented in
Figure 1, the vertical exchange of suspended sediment mass due to turbulent diffusion and gravitational
settling can be described by the one-dimensional diffusion-advection equation as

ac aF &C a(w.C)

where C is the concentration of the suspended sediments, w. is the particle fall velocity, z is the
vertical axis and t is the time. The variable C. is the concentration gradient, i.e.,

c _ ac (2)
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Figure 1. Vertical profile of suspended sediment concentration.



4

while the variable F denotes the diffusive flux,

F = aC (3)

where K is the eddy diffusivity coefficient. In the r.h.s. of eq. 1, the first term represents the negative
(upward) flux due to turbulent diffusion, while the second term represents the positive (downward) flux
due to particle settling. Rearrangement of eq. 1 yields

ac a (K8. wC) .4)

Furthermore, if K and w, are depth invariant, by using the normalization variables,

wtKtZ= T H- T H

eq. 4 can be re-written in a non-dimensional form either as

ac. a (Lac- (6a)

or as
'9c . a ac

- •-7 (7- CP.) ,(6b)

where P. is the Peclet number, H is the water depth, Z is the length scale, and T., T, are the advective
and diffusive time scales respectively. Under steady-state conditions

P-=-! ac(7)

i.e., the Peclet number characterizes the stratification of the suspended particle system (Teeter, 1986).
It is known however, that the eddy diffusivity coefficient, K, depends on the flow and stratification
characteristics as given by the following relation:

K-A(1+sRj,)-T , (8)

where A is a turbulent [nixing coaeficient, R is the Richafdson's r.umbe..r and s, r arr expadmantal
constants (Okubo, 1970). More specifically, the coefficient A is related to the velocity shear and
turbulent fluctuations,

au 1 , (9)

where u is the longitudinal flow velocity, 1. is the mixing length,

l.-kz(1-Z) , (10)
H

and k is the Von Karman's constant. In addition, the Richardson's number reads
*1

____ __ ___ ____ _ _ ___ ____ ___ ___ ____ __ ___ ___
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Ri.= P.-P -zP (au z' 11

where g is the acceleration due to gravity, and p, p are the densities of sediment and water
respectively (Scarlatos and Mehta, 1990). Using eq. 11, the eddy diffusivity coefficient (eq. 8) is re-
written as

K=A(1+B.a) , (12)

where the coefficient B is given by the following expression

PS-P 1B~gp ( au)2 (13)

For fine particle suspensions, the experimental constants s and r where found to vary between the
limits: 3.33 < s < 10 and -2.0 < r < -0.5 (Ross, 1988). These limits include the values reported for
salinity or thermal stratification, i.e., s = 4.17, r = -2 (Delft Hydraulics Laboratory, 1974), and s =
3.33, r = -1.5 (Munk and Anderson, 1948).

Combination of eqs. 1-3 and 12, after some alciebraic manipulations yields,

-Ac[1+(1+r)Ba] (+Bac)I- a2C _(wC)
E7Z az---T-(14)

The critical state of the stratified system described by eq. 14, can be obtained from the following
equation (Posmentier, 1977):

[1+(1+r)BaC.] (1+B4-)X-=o . (15)

Whenever C, is such that the I.h.s. of eq. 15 is greater than zero, the interface tends to bri diffusive
leading to mixing between the layers of different density. Under these circumstances, if a = 4 and
r - -2, then Pk < 0.25 which is the sufficient criterion for instability in shear stratified flows (Turner,
1973). For s = 3.33 and r = -1.3, the instability relation becomes RF, < 1, that is consistent with
the sufficient stability criterion presented by Miles (1987). For r = -1, the system appears to be
unconditionally stable (Scarlatos and Mehta, 1990).

The settling velocity, w., depands on the suspended sediment concentration, C. initially, the
settling velocity increases with increasing concentration until the concentration reaches a critical
v•lue, Cm, after which the settling rate is reduced due to hindered settling effects (Mehta, 1986).
These relations are quantified as follows:

w.,=kC , for C C. , (16)

or

w.=w,,(1-kC)P for C>C , (17)

where w,. is a reference fall velocity, and k,, k2 , u and , are experimental constants depending on the
sediment characteristics. The values of these constants were reported in the literature as: k, = 0.5.
k2 = 0.008, 1 5 a -; 2, f 5 and w. 2.6 mm/a The value of the critical concentration, C., for

I
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the onset of hindered settling varies according to the sedment composition, between 3 S C,ý • 15 g/Il
(Mehta, 1986).

Depending on the settling mode of the falling particles (free or hindered), combination of eqs.
14, 16 and 17, leads to the following relations respectively

a acAc)+(I +B 43C)~OC(lkC CA[1+(I+)B ] (1+BK )-' aZ2C -(c)k•C , for C;C. (18a)

and

a "A[1+(1+r)Ba.] (1+BE)r-I aC+z7 F (18b)

[wok2P (1-k 2C) P.1C-w,0 (1-k 2 C)P] Oc for C.C,

For completeness of the mathematical problem, boundary conditions are properly assigned. Assuming,
no particle re-entrainment from the bottom, both boundary conditions, i.e., at the water surface and
the bottom are taken as of zero-flux,

Kta!-wC=O0 (19)

The system of eqs. 18a, 18b, and 19 constitutes the theoretical model used to simulate the
microstructure profile of cohesive sediment suspensions. This model is a PDE, nonlinear parabolic
system. The nonlinear terms involve power-raised combinations of the dependent variable, C, and Its
first and second spatial derivatives.

NUMERICAL APPUCATION

The governing system of equations (eqs. 18a, 1 8b and 19) cannot be solved analytically in its
general form. An iterative, implicit finite difference scheme can be applied to solve the problem
(Scarlatos and Mehta, 1990), However, in this study, eqs. 18a, 18b are discretized based on a
linearized finite-difference scheme. Linearization is achieved by evaluating the concentration and its
spatial derivatives of the nonlinear terms either from the initial conditions or from the previous time
step:

ac. 5C. (20)

C .. tC. CJ.,-2C1tC2.c1  (21)

az2 8Z2  8z 2

ac. ac. cy'-c, (22)

where i, j are respectively the number of spatial steps, 6z, and temporal steps, 6t. The dependent
variable, C, is known at time step jdt, and the solution marches to the new time step Q]+ 1)6t. This
explicit numerical scheme is subject to the CFL stability conditions

t.-2K, and .z•2Rx (23)

If the second stability criterion is violated oscillatory solutions may be expected (Fletcher, 1991).

.... ---- --. ..-- --- -.-. --- -. - ..



The solution domain is unbounded along the longitudinal axis. For the upper and lower
boundaries a no-flux condition (eq. 19) is used. A time-independent, parallel flow with the following
hyperbolic-tangent velocity profile was applied:

u(z)=O.5(1+tanhz.) , (24)

where z. is a linear function of the depth z. Similarly, the initial concentration, C., is given by a
hyperbolic-tangent relation,

C0(z)=c(1+Canhz.) , (25)

where z+ is a linear function of the depth z and c is a constant.

RESULTS AND DISCUSSION

The computer model was applied under different flow fields, Initial concentrations, and
experimentaii constants. The applications showed either development of a smooth concentration profile
or generation of a step-wise density distribution. Micro3tructure was primarily observed above the
lutocline. In general, the results were In good agreement with the theoretical discussion pertaining eq.
15. However, there were some cases where the numerical computations became unstable due to
violation of the criteria for numerical stability (eq. 23).

The time-spacs variability of the eddy diffusivity and settling velocity in eq. 23 placed a lot of
limitations to the selection of the time and space steps, 6t, 6x. Whenever, oscillatory motion was
observed, the stability criteria were checked for compliance. However, due to the highly nonlinear
character of the governing equation it is possible that the CFL stability criterion may not reflect
accurately the conditions for numerical stability.

Two representative cases of smooth and microstructure profiles are presented In Figures 2 and
3 respectively. In Figure 2, the suspended sediment profile remains smooth in time; the value of r used
for this particular run was -1. In Figure 3, a microstructure profile was Wjtablished above the lutocline;
the value for r was -2. Some possible microstructure effects can be observed also near the lower
boundary.

A more robust, implicit numerical scheme is under development for comparison purposes. The
simulation data are in qualitative agreement with limited field and experimental observations.

l.O •,,[ , Initial Concentration .

0.9 n Concentration ofte, 30 mrin

0.8 - Velocity Profile

0.

00.6 .

0.2Z 0.3

0.2

0.1
0. 0,, ,

0.0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized Concentration and Velocity Profiles

Figure 2. Development of a smooth suspended sediment concentration profile.
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Figure 3. Generation of a microstructure suspended sediment concentration profile.

CONCLUDING REMARKS

The one-dimensional, nonlinear diffusion-advection model equation was able to produce vertical
concentration profiles of suspended cohesive sediments with evident microstructural characteristics.
This was attributed to the fact that under certain circumstances turbulent diffusive mixing i3 locally
enhanced leading to step-like homogenized regions. The microstructure characteristics will vary for
different velocity profiles, initial suspended sediment concentratiorn profiles, and sedimen*
characteristics.
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TURBULENT ENTRAINMENT OF SOLID PARTICLE SUSPENSIONS
IN A TWO-LAYER PLUID

Xuequan E and Wei WANG
Institute of Mechanics, Academia Sinics, Beijing 100080, PRC

ABSTRACT

The growth behaviour of zero-meau-shear turbulent mixed-layer containing suspended solid
particles has been studied experimentally in a two-layer fluid system. The experimental results
show that the relationship between the entrainment distance and time, and the variation of
the dimensionless entraianment rate E with the local Richardsoa number Rij for the suspended
particles differ from that of the pure two-layer fluid by the factorn h'-1/5 and r-1 (17 = 1 +
vcpj/Apo, where co is initial volume concentration of particles), respectively.

INTRODUCTION

Stratification of fluid exists extensively in geophysical and industrial fluids. The turbulent
mixing in a stratified fluid is important in controlling water-quality and tackling pollution in the
atmosphere and various bodies of water. If there are solid particles suspended in a turbulently
mixed layer, kinetic energy will be consumed to keep the particles in suspension, thus changing
the turbulent structure and affecting the behaviour of turbulent entrainment. Therefore, it
is necessary to investigate the influence of suspended particle concentration on the turbulent
entrainment.

E and Hopfinger t'l investigated turbulent entrainnients on settled solid particles on the
bottom in a uniform fluid, and obtained a relationship between the distance of turbulent en-
trainment and the r.ms. turbulent velocity, and the local buoyancy flux. Barenblatt[2J studied
the shear turbulence with the suspended particles saturated near the wall by means of dimen-
sional analysis. In order to understand the entrainment of a turbulently mixed layer containing
suspended particles, one has first to make clear the characteristics of turbulence. The features
of the zero-mean-sheai turbulence generated from the planer oscillating grid have been widely
studiedi3 '"]. The grid stirring can sinulate the natural processes in which turbulent energy is
put in on a scale much smalle than the layer depth, such as the breaking of waves at the sea
surface[N]. The oscillating grid was selected as the turbulent energy source. The investigationN3]
show that the horizontal (u, v) and vertical (wo) r.m.s. turbulent velocity components (u.trw)
and the integral lengthscale of turbulence I at a distance z away from the grid midplane, are
given by

Us CM1/2S~i2  (1)

I= 0z (2)

where C is the coefficient of proportionality, approximately 0.3, S(cm) is the stroke of grid
oscillation, M(cm) is the mesh length, /(Hz) is the frequency of grid oscillation, and 3 is the
constant related to stroke S, here 6 = 0.11,]. Relation (1.1) is a good approximation to the
ran.s. turbulent velocity generated by the grid made from square bars with the mesh size
M/d=5, oscillated at f/6Hz (where d is the bar size).

The aim of the present work is to study the growth law of a zero-mean-shear turbulent
mixed-layer varying with the solid particle concentration (in terms of volume or mass) and



external parameters of the turbulent source. The experiments have been conducted in a wide
range: S = 2 - 5ern, f = 2 - 5Hz, initial particle volume concentration ao = 2.98% - 7.24%.

EXPERIMENTAL PROCEDURE

The experiments were performed in an oscillating grid turbulence tank of 52cmx52cmx 70cm
as shown in the Fig.l. The tank was filled with two-layer fluid (the upper layer was clean water
9cm in depth). The plastic particles of diameter about 100plm and density 1.04g/cm3 were
putted on the interface, and the increment of the water level after putting the particles was
recorded so as to measure exactly the initial volume concentration of the particles.

Using the method of shadowgraph, we visualized the interface and the front of thý.e turbulent
entrainment. A digital clock with precision of 0.1s was installed at the front face. The position
of the trubulent front and corresponding time were recorded by the photographs. On the sha..
dowgraph (or film), the mean horizontal position of the turbulent front of the mixed layer (or
the depth of the mixed layer) D would be found. The reading error was smaller than 29-m. The
time digit on the film was the time when the front arrived at the corresponding position, thus,
the entrainment rate of the mixed layer could be determined.

EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Relations Between Entrainment Distance D and Time t
Under the given conditions (zo and Apo/p 2 were kept constant, Apo = P2 - pI), the exp-

eriments were conducted for different frequencies f, strokes S and initial volume concentrations
of particles 0o(0o = 0, for the pure two-layer fluid). The results are shown in Fig.2, from which
we know that D can be expressed as

D = at", k = 0.20+0.034 ()
-0.009 ,

where a is a constant related to the frequency f, the stroke S and the initial volume concentration
ao determined by experiment, (see Table 1). Fig.2 shows that the time-variation law of the
entrainment of suspended particles in the mixed layer is the same as that of the pure two-layer
fluid: DoCtl/ 5 , but the D-t line for the suspended particles is below the line for the pure two-layer
fluid under the same initial conditions (Fig.2(a)), showing that the growth of the mixed layer with
suspended particles is slower than that without suspended particles when o , k = 0.20+o2+0°7
which is in good agreement with the results in [6].

Table I gives some of the values of the experimental results. They were obtained by using
the least-square fitting to the measured datum points (D, t), with the linear correlativety above
0.99.

B. Relation Between the Entrainment Distance D and the Oscillation Frequency f
It is known from Fivs. 2 that when S and v- are given, the interception loga has dilterent

values for different frequencies f, and a depends only on f

a = aifl', a, = 0.80±0.05, (4)

where al is the proportional constant related to S and a0. The variation of a with f is given in
Fig.3. FRom (3) and (4) we obtain

Docf°rW, (5)

(5) also shows that the fluids with and without suspended particles have the same frquency
relation. The corresponding values are given in Table 1.

2
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C. Stroke Dependence
In order to determine the relation between D and S we have measured the turbulent entrain-

ment distance for the various strokes S, at a fixed frequency (f = 2Hz) and the same values of
c-o as those in the various firquency experiments. The measremental results are given in Figs.
2(b). Evidently, when f is fixed, a in (3) is related to S ana ao. Fig.4 gives the logarithmic
relation between a and S in the case of civen -o-, consequently we have

a = a2 S, a2, = 1.20 +0.03 (8)-0.04.

Here a2 is a constant related to f and ao, but it is unly a function of ao at fixed f. Corresponding
va-lues are given in Table 2. The mixed layer entrainment of both the pure two-layer fluid and
the fluid with suspended particles, varies with S of 1.20 power

DocS 1.20 . (7)

1.A Variation of Entrainment Distance with Initial Part.cle Concentration
Alaer the relationship of D with f and S is obtained, it is not difficult to find the relation

between the entrainment distance and the initial particle volume concentration. Fig.2(c) shows
that at f and S, the interception loga has different values for different a-o. ThiF means that a is
related to rao. aj and a2 in Tables 1 and 2 also give some indications of such dependence. But,
considering that the D-t relationship must degenerate into that for the pure two-layer fluid, it
is reasonable to take qi = 1 + 'rop•IApo (here p, is the density of plastic material of the particle)
as a parameter to replace ao. The variations of a, and a2 Yithq1 are given in Fig.5. Dividing a,
and a2 by S120 and for80 respecitively and maling statistic average, we obtain the proportional
constant as related only to cro. Generally, as is also related to Zo, Ap0/p2 and M, but these
parameters were fixed in our experiments. Fig.6 shows the variation of a3 with r,, from which
w2 get

as = atf, O, = -0.20±0.27, (8)

where a4 is the proportional coefficient related to M, zo and Apo/p2.
From (3), (4), (6) and (8) it is known that D is proportional to qm3:

Docyr-0 . 0, (9)

Because ao,, -- = 1,p,, = 1.04g/cmr5. and p,,ýZl.18g/cn 3 , we have b = 5.8 which is impob-
able. Consequently, 1<71 < 5.8. 1 = 1 for the prue two-layer fluid.

E. Growth Behaviour of the 'Turbulent Mixed Layer
The growth of the mixed layer is characterized by the entaminment distance D. As mentioned

above, D is directly proportional to t°' °, P. S1.20 and 1-0-20. So D can be written as

0.0= a s 1.0 °-S" .Y20,ai" (10)

where a5 is the proportional constant related to H, zo and Apo/p 2 . (10) can be obtained
from (3) by resolving a gradually. (10) gives the entrainmeat law of the mixed layer containing
suspended particles. Actually, the proportional coefficient a5 is equal to a4, so as = 0.664. When

0ro = 0 and r, = 1, (10) becomes

D = 15SL"2 0 fmto.20 . (11)

(11) shows the entrainment behaviour of the pure two-layer, which is consistent with the results
of R•.[61].
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F. Relation Between Entrainment Rate e and Richardson Number Ril
With the D1- t relation determined, it is not difficult to find the growth velocity of the mixed

layer u, = dD/dt. The dimensionless entrainment rate E and the local Richardson number Ril
based on the horizontal rms. turbulent velocity at z = D are defined as [6]

E = w/u, (12)

Ail = (g-Ij) /, 2 , (13)

where

= P zo(D (14)A = (p i o PI = ý+ + P2 (14

In Fig.7 the variation of entrainment rate E versus Richardson number Ril is plotted on a
logaithmic scale. The fitting to the experimental data by the equation

E = KRi7'5 °, (15)

is satisfactory. From Fig.7 we can see the dependence of K on uo or 1', which can be expressed
as

K = Kof -, (16)

where Ko is a constant at Go = 0, Ko = 13.421 (see Fig.8). The date are given in 1±.ole 3.
Eq. (15) shows that that the dimensionless entrainment rate E of the mixed layer with

suspended particles does not change the power law of Rig, differing from the pure two-layer by
only a factor y-1. This means that when ,1 (i.e, o0) increases, E decreases by the first power

(Ecol/j). When ao = 0, Eq. (15) becomes E = KoRi 5 12 
, which is excellently consistent with

the experimental results in Ref.[6].

CONCLUSIONS

In this paper, the entrainment of the turbulent mixed layer with suspended particles has
been studied experimentally in the two-layer fluid system. The principal conclusions are drawn
as follows.

1. The time dependence of turbulent entrainment for suspended particles is the same as
that for a pure two-layer fluid: the entrainment distance (or depth) D varies with 1/5 power of
time, i.e. D = atk, k = 1/5.

2. The entrainment distance D depends on the exterior parameters of the oscillating grid
gengerting a tubulent source, i.e. D is directly proportional to f4/5 and S611.

3. When D>zo (a long time procedure), the entrainment distance D can be estimated by

D = A 8- 3 1 0  M/ / 5t" 5

which differs from that for the pure two-k 'er fluid by a factor of if-/s.
4. The entrainment velocity ue of a mixed layer decreases with an increase in i1, i.e.

uec-1.

5. The dimensionless entrainment rate E for a fluid with suspended particles observes the
same power law Rig as that without suspended particles, E = KRi7- 1/, where K = Ko0F-,
differing only by a factor q-1. This shows that E for the former decreases as 1 increases. At

= 1, E = KoRi[ 1 2 
, which describes the turbulent entrainment of a pure two-layer fluid.
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Table 1
Numerical Vaules for Relations (3), (4) and (8)

(z = 9cm, Apo/p 2 = 0.0584, S=2cm)

oo f a al a, 0" a 3  k
z(cm.Su-) (cm.S"1) (0.80) (-0.20) o.20o

0.0000 3 4.14 1.57 0.846 0.214
4 5.25 0.195
5 5.86 0.196-7- 2.51 -0-0.213--

0.0297 3 3.46 1.40 0.824 0.234
4 4.13 0.219
5 5.51 1.56 -0.240 0.209
Z 2.34 -VUT--

0.0506 3 3.31 1.35 0.798 0.230
4 3.81 0.229
5 5.06 0.218
2 2.14 -U=-

0.0724 3 2.93 1.29 0.750 0.240
4 3.49 0.234
5 4.31 0.229

NXce: The values in parentheses are the theoretical values. a, a• 7170.

Tuble 2
Numerical Vaules for Relations (3), (4) and (8)

(z = 9cm, Apo/p 2 = 0.0584, f=2Hz)

a0 3 02 aj aq 03,= (o.-S_' (..-a.S-k) (CM.1-0. -k) 1.0 -0.20) (.0-
3 4.2 (1.20)

0.0000 4 6.46 1.13 1.23 0.191
5 7.94 0.196

3 .-M -U=.5-
0.0297 4 5.62 1.04 1.20 0.199

5 7.08 1.13 -0.214 0.193
J -'3.50 .

0.0506 4 5.15 1.00 1.17 0.201
5 6.53 0.193

3 3.41 -J227-
0.0724 4 4.61 0.95 1.16 0.209

5 6.18 0.205

af -a2/170&

I
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Table 3

Experimental Values for Relation X = Ko77O

z .S f i'o 77 K Ko 094(CM) (cm) (Hz) .U 10 73 M
9 2 2-5 0.0297 1.498 9.638 13.583 -0.984

0.0506 1.849 7.447 .000)
0.0724 2.214 6.026
-.-U-- 0400 .oo-1 0 .972

9 3-5 2 0.0297 1.498 9.550 13.490 -1.052
0.0506 1.849 7.015 (-1.000)
0.0724 2.214 5.636

5 4 321

0 II -ZP

Fig.1 Schematic diagrama of the experimenetal apparatua and arrangemaent.
1, grid; 2, connective rod; 3, localization sleeve; 4, cantilever beama; 5, sliding rod; 6, sliding sleeve;

7, crank; 8, cam; 9, reducing gear; 10, frequency-modulated electric rnacbixoe;
11, frequency-modulated device.
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Transition to stable state and mixing of initially unstable continuously stratified fluid.

Ya.D.Afanasyev
Institute of Oceanology, Russian Acadm. of Sciences, KraAikova 23, Moscow 117851, Russia. Fax:

RUssia + (095) 1245988
L.ntroduction
The gravitational instability occurs in a system consisting of heavier fluid lying on top of less dense

fluid. Any sinusoidal perturbation of the interface with not toou small wave length (otherwise it is smoothed
by diffusion) will grow under the action of a buoyancy force. An array of convective elements (mushroom-
like structures) develops in the fluid fortaing the mixing layer. The convective motions will continue
until an ultimately stable stratification is established. The process of transition from unstable to stable
stratifications is determined by the initial density distribution. When a system consists of two layers of
equal depths and with different densities, the depth (h) of the mixing layer grows with time as h oc t'
(Andrews, Spalding, 1990; Lindea,Redondo, 1991). When the density anomaly is initially concentrated
in a thin fluid layer at the surface, a different asymptotic behaviour is observed: h o t (Dikarev, Zatsepin,
1983; Voropayev, Alanasyev, van Heijst, 1993). For the case of a continuously stratified fluid, when the
density decreases linearly with depth initially, a more complex transition process is observed (Voropayev,
Afanasyev, van Heojst, 1993). The laboratory experiments show that the flow evolution is characterized
by a number of distinct stages: different modes of instability emerge subsequently through the entire fluid
column, leading to the overturning motions in thin horizontal layers, which finally break up into thermal
- like convective structures. For many applications It is important to determine the mixing efficiency
of the particular transition process. For the numerical models of oceanic flows the estimates of vertical
mixing are required. Various natural circumstances can create diffaeret Initially unstable stratification.
In a case of surface cooling, a thin surface layer becomes heavier and, hence, unstable. The unstable
density distributions can be generated also by brealdng Internal waves In a continuously stratified ocean.
The mixing efficiency (17) wes measured by Linden, Redondo (1991) in the laboratory experiments with
two-layer fluid. It was suggested that the value 17 - 0.35 (that corresponds to an uncomplete mixing)
rather than t7 - 0.5 (complete mixing) can be recommended for the numerical models. The aim of the
present paper is to consider the mixing efficiency of the flows with different initial density distributions:
thin layer on the surfce; two layers of equal depths; linear stratification. The results of conductivity
measurements in the recent experiments by Voropayev, AfAnasyev, van Hebist (1993) are used to obtain
the estimates of mixing efficiency.

2. Experiments
Experimental arrangement
Since the experimental mt-up was described in Voropayev, Afanasyev, van Heijst (1993), only a brief

description is presented here. The experiments were conducted in a narrow transparent tank of dimensions
98 * 55 * 2 cm, which could be rotated about its long horizontal axis. The stable density stratification
(step-like or linear) was created by variation in the salt concentration In the vertical direction and was
measured by a conductivity probe. The probe was fixed on a vertical traversing mechanlsm. In the exper-
iments with a thin layer the initial height of the layer of denser fluid was ho - 1cm. The density excess
(Ap) was varied in the range Ap - (0.2 - 16)10- 39cm-3. Two experiments with layers of equal height
(1/21 where H = 55cm is the height of the tank) and density difference Ap = 8 10-4; 1.2 10- 39cm- 3 was
also conducted. The third series of experiments was carried out with a fluid layer with an aproximately
constant undisturbed density gradient dp/dz = -- -= const, with the z- axis directed upward. Very weak
initial density gradient was applied, -y - (I0o- - 10-4)gcm-4. An inverae and hence, unstable density
stratification was obtaiud 1by turnin the tank up•s•Ade d .wn. The -'nductivity probe was used then to
measure the final density distribution which established after the transition process. The density profiles
were taken when the motions in the tank decayed.

Observations
During the overturning of the tank, the fluid undegoes an irrotational displacement with respect to

the tank. As a result, the interface between layers, or the isopycnala in the case of a linear stratification tilt
at an angle V - tan-1 2x w 810 (Simpson, Linden, 1984). This process determines the unstable density
distribution after the overturning. In the experiments with a thin layer, the heavy layer is localized near
the upper part of the back wall of the tank at depth 4 - 5 cm after the overturning. Small convective
(thermal-like) elements with a typical mushroom shape form along the layer as a result of gravitational
instability.The convective elements grow with time, their number decrease because of subsequent pairing
of interacting elements. The potential energy of the system decreases as a result of downward movement
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of heavier convective elements. The elements effectively mix the fluid because of viscous entrainment
of adjacent fluid. In a case of linear stratification, the resulting density distribution in the tank after
overturning will be the following. At the midplane, the density profile is inversed compared to the profile
before the overturning of the tank. At the front and back walls of the tank the density distribution is
represented by the profiles with the same unstable density gradient as at the midplane, but shifted up
and down, respectively; over a distance Az = (1/2)tantp = irl, -= 2c•m being the width of the tank. Such
a density distribution determines the subsequent development of instability process. The fluid at the
front wall of the tank turns out to be lighter than the fluid at the back wall, so that the linearly stratified
fluid begins to move upward and downward along the front and back walls of the tank. As a result,
the fluid separates into two vertical layers with different density and, hence, pressure at any horizontal
level, The vertical interface between two layers becomes unatable and the layers begin to intrude into one
another forming horizontal layers of different density. Thus, ti.. system turns out to consist of alternating
horizontal layers of relatively denser and lighter fluid. Each pair uf layers suborquently begins to overturn.
This leads to the formation of small-scale layers which then break up into numerous convective elements.
The development of convective flow structures leads to an effective turbulent mixing of fluid.

3. Mixing efficiency
The potential energy of the stratified fluid layer with a density distribution p(z) can be defined as

P 9JH (P(z) - O)zdz (1)s

where po- is the density of fresh water. After the overturning of the tank when a heavier fluid
is at the top, a system contains the Initial potential energy Pt given by (1) where p(z) is the density
profile immidiately after the overturning. If no mixing occurs during the subsequent transition process,
the density profile would simply be overturned again back to the utable profile that was before the
overturning of the tank. In a two-layer case, the two layer@ would Uaiply exchange places without any
change in their densities as would be the case with immiscible fluids. Tha potential energy (Po ) of the
system before the overturin (or after the transition process when there is no mixing) is

t
P- 9 ((H - X) - P)ZdZ (2)

Thus, the maximum amount of potential enmegy that can be released in the transition process is Pm• =

Pt - PO. For three cases of interest, the energies Pi and P0 axe given by the following formulas:
(i) Thin layer

p(z) po=•f or0 <:z <_ H - he

p(z) = p, for H - h0 : z <_ H

Pi = gp1ho(H - N) r- gpihoH (he << H)

Ao " gpim 10 =

(ii) Two layers with equal depths

p(z) = p• for 0 o z < H/2

p(z) = p, for H/2 < z _ H

3H 2

A P, = 8i

Po= 21's
2P,

3
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(iii) Linear stratification
p(z) = PO(1 + -rz)

H3

P. = ;j3

2
Thus, almost all initial potential energy can be released in a thin-layer case. Another extreme is a

trivial case of a completely mixed (homogeneous) fluid when zero energy can be released. The cases (ji)
and (iii) are between the extremes. Following Linden, Redondo (1991), define the mixing efficiency i as
a part of Pm,, that is used to mix the fluid

7 Pf - PO = Pf - Po

where the finul potential energy Pj is calculated from (1) where p(z) is the measured final density
profile. Another part of energy (1 - , 7)Pz is dissipated by viscosity during the transition process.
Values of the mixing efficiency 7 versus the Af-ood number A for the experiments with different initial
stratifications are shown in Table 1.

Tabl I
17 0.22 0.34 0.41 0.35 0.39 0.31 0.33 0.41 0.28
A * 103 0.2 0.8 2.0 4.0 0.4 0.6 0.6 1.2 2.0

Wi (ii) (wi)

The Atwood number is defined as A PL - POA =

P. + po

for step-like stratification and as t
A= 'YH

2

for the linear stratification. Though all the experiments were carried out with small values of A, the high
values of 'i were obtained. The mean value of 77 is ,n r 0.35 that is consistent with the results obtained
by Linden, Redondo (1991).
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Laboratory Measurements of
Vortex Evolution in a Stratified Shear Flow

Donald P. Dells!
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PO Box 3027, Bellevue, WA 98009-3027

ABSTRACT

Laoratory measurements of the evolution of a two-dimensional vortex pair in a
Wratified shear flow are reported. The measurements were obtained in a rectangular-shaped
tilting tank, where salt was used for density variations, and a vertical shear was genmea by
tilting the tank through a small angle. Measurements were obtained in Richardson number
flows varying from 0.6 to infinity (no shear). A vortex pair was genrated in the tank after the
flows were established, and the evolution of the vortex pair was observed. A solitary vortex
was observed to evolve when the Richardson number was of order five or less.

BACKGROUND

The vertical distance a vortex pair migrates is a function of the ambient stratification,
As the background straificato increases, the vertical migration distance decreases (Srpkaya,
1983). In these case, there is no asymmetry in the flow, and the vortices decay symmetrically,
each vortex in the pair decaying at the same rate.

Robins and Delisi (1990) reported on numerical studies which examined the evolution
of a vortex pair in a stratified, shear flow. Those studies showed that when the shear is smlI
enough, the vortices decayed symmetrically, as in the nonsheared can. When the shear is
large, however, the vortices decayed asymmetticaly, with the vortex whose rotation was
Opposite to the rotation of the mean shear decaying while the other vortex survived. The study
showed that a solitary vortex evolved from the vortex pair when the Richardson number was
of order one or less.

Initial laboratory observations by Delisi et al (1991) showed the evolution of a vortex
pair in a flow with Richardson number equal to one. In this flow, the vortex pair evolved into
a solitary vortex. Supporting numerical calculations were consistent with the observations.

In this paper, additional laboratory observations are presented. Measurements Include
rise height with time, vortex separation, and estimates of vortex circulation with time.

THE EXPERIMENTAL FACILITY

The experiment was performed in a rectanguiar-shaped tilting tank m to one used
by Thorpe (1968). The tank is 488 cm long, 61 cm high, and 15 cm wide. A linear density
profile is used in the tank, resulting in a linear velocity profile. Figures I and 2 show qpical
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density and velocity profiles, respectvely. In both figures, the symbols indicat the
measurements, and the dashe line is a linear, least-squares fit to the data.

Three cases are presented here: (a) a nonstratified, nonsieared case, (b) a stratified,
nonsheared case, and (c) a stratified, sheared case. In all three cases, nominally identical initial
vcrtices were used. These vortices were generated by moving two wings, initially at rest,
down the tank iu opposite directions. The starting vortces generated by the wings fanmed the
vortex pair. To minimie the effect of the wings on tho background flow, the wings ar placed
just below the centedine of the tank, where the flow velocities arc low.

To perform an vex nt with stratification and shear, we filled the tank with water,
tilted the tank to create the vertical shear, moved the wings down the tank, and observed the
resulting vortex pair. The observations continued until surges from the end walls modified the
flow in the test section. In the stratifled sheared flows, experiments were performed with
Richardson numbers ranging from 0.6 to over 6.

RESULTS

The nonstrandfie, nonsheared vortices migrated with a nearly constant speed and a
nearly constant separation between the vortices. The migration speed was 4.9 cmn/sc, and the
separation was 13.6 cm. This gives an intial votex ciulaion of ro = 2 x h 'V. = 419
cni/sec, where b. - the initial separation, and V. - the initial migration speed. The vortex
Reynolds nmber, r, / v, is 41,900. The votex Froude number, defied as V / N b,, where
N is the Brunm-Vaisala (B-V) frequency, is 1.0. This low Froude number was used became we
needed to have a B-V frequency large enough to limit the migration distance of the vortices,
due to the finite depth of the tank.

Raults for a stratified, noushearad ce are shown in Figure 3. Here, we plot H vs T,
whereH 1 h-/ I , and T - V. t / b( , where h is dimn sional height amd t is dimnsional tim.
Because we generate each vortex separately, we have plotted both the left and right vordoes
separately. Data from Sarpkaya (1983) for Froude number 1.0 is plotted as the solid symbols.
The data from the present study is consistent with Sarpkaya's data. The dashed line is H = T.

In the run shown in Figure 3, N = 0.323 sec-'. In Figure 3, one-third of a B-V period
corresponds to T - 2.1, and is consistent with the maximum, observed migration of the vortex
pair. In this run, the average, initial vortex separation was 15.0 cm, which is ten percent larger
than in the nonstratified case. We believe this larger separation is due to the vortices pulling
heavier water up in the center and lighter water down on the sides at the top, thus generating a
horizontal pressure gradient which pulls the vortices apart.

Figure 4 shows a series of four streak photographs for the satified, sheared case with
Richardson number - 2.32. Only part of the tank is shown in the photographs. We

e nalize timeasinDldisiet al(1991) byt/T,, whereT.o=ib./ V. Hem. To- 2.79
sec. In the top left photo, T. - 0.49, and the vortices are symmetric. In the next photo, at the
top right, T, = 1.16. At this time, the vortices have migrated vertically but are still nearly
symmetric. The bottom left photo is at To = 1.84. In this photo, the left vortex is noticably
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weaker than the right vortex. In the final photo at the bottom right, at T, = 2.51, the left
vortex is essentially destroyed, leaving only the right vortex remaining.

Circulation estimates for all three runs are shown in Figure 5. These measurements
were obtained from the streak photographs over a circle of 5 cm radius, centered on the vortex
core. For all three runs, the open symbols denote the left vortex, and the closed symbols
denote the right vortex. The nonstraffied, nonsheared case is shown by the circles. The
closed square on the y-axis shows the calculated, initial vortex citculation for this case. The
circulations decay with time, presumably due to turbulent diffusion. The noustratified,
nonsheared measurements end when the vortices migrate into ground effect with the top of the
tank.

The diamond in Figure 5 show the measrnements for the stratified, nonsheared case.
These measurements continue on further in time than those for the nonstratified case since the
statification inhibits the vertical migration of these vortices. The initial decay of the stratified,
nonsheared vortices follows the decay of the nonsiratified vortices.

The stratified, sheared measurements are shown by the triangles. In this case, the rate
of decay of the right vortex is similar to the decay of both the nonstratified, nonsheared
vortices and the decay of the stratified, nonsheared vortices. The left vortex, however, decays
much faster, starting at t /To around 1.6. This behavior is similar to that shown in Robins and
Delisi (1990), who showed in numerical calculations that the maximm-a vorticity for the
opposite sign vortex in a vortex pair in a low Richardson number flow decayed like the
vort•city in a higher Richardson number flow for a while, and then rapidly decayed. This rapid
decay was observed in the last two photographs in Figurr 4.

SUMMARY

Results friom laboratory experiments of the evolution of a vortex pair in stratified and
sheared environments have been presented. In the nonstratified, nonsheared flows mid the
stratified, nonsheared. flows, the results are consistent with the results of previous
investigations. In the stratified, sheared flows, the observations clearly show the evolution
from a vortex pair to a solitary vortex when the Richardson number of the background flow is
2.3. Additional expeziments show that this behavior occurs when the Richardson number is
around five or less.
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Abstract

In this study, the motion of a three-layer baroclinic vortex, representing mediter-
ranean water eddies, is investigated. Among all the mechaninms that can induce a
motion, we focus on the action of bottom topography. In paxticular, we are looking
for steadily translating structures over a constant bottom slope. Depending on hy-
drological data, "strongly isolated eddies" move with the deep waters at their right
or at their left.

Experiments in a rotating tank are also presented that confirm the fact that the
lens propagate along isobathes in both directions.

1 Introduction

Many recent campaigns at sea near the strait of Gibraltar have revealed the presence
of very strong long-lived baroclinic vortices of mediterranean water (Armi et al, 89;
Arhan et al; Prater, 92; Le Squere 94).

This paper aims at describing several processes that can have a significant elfect
on the displacement of these "meddies" according to us: beta and beta-topographic
effects and a mean current in the upper layer. Since this is a mechanism that has
never been proposed as far as the motion of meddies is concerned, we will focus on the
effect of a bottom topography. Indeed, when an intermediate vortex is propagating,
there must be a motion in the lower layer. Thus, it can interact with a bottom
topography. in Morel (94), we have used a three-layer Shallow Water model to study
the effect of a constant bottom slope. When the eddy is strong (high Rossby number
and variation of depth comparable to second layer depth at rest), the equations for
the second layer are non linear and can not be solved. However, we have shown how
an hypothesis of strong isolaiion (i.e. nul axisymetric part beyond a certain distance
from the center of the meddy in each layer) constraints the displacement speed to be
entirely determined by the surrounding hydrological data. But we were not able to
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prove that the problem had a solution. In this paper we will study the problem in
the context of quasi-geostrophic theory for which the equations are simpler.

We will first review previous studies that have been done to explain the observed
trajectories of mediterranean lenses. Then we will discuss the quasi-geostrophic equa-

tions for a three layer-ocean and show how a mean upper layer current can generate
a displacement of a vortex (section 2). In section 3, we will focus on the effect of a
bottom slope and look for steadily translating structures with "no potential vorticity
anomaly" in the tipper or lower layer. Experiments in a rotating tank (the Cori-
olis tank in Grenoble) are presented and discussed in section 4. Some preliminary
numerical results are examined in the conclusion.

2 The three-layer Quasi-Geostrophic model

Observations and previous studies

McWilliams and Flierl (79) have shown that isolated vortices can resist dipersion
providing they are strong enough. As mediterranean water vortices are strong (see
Prater, 92 for a review), they can live for a long time. In particular, Arnii et al
(89) have followed a meddy (Meddy 1, Sharon) which moved southward almost con-
tinuously during two years! Many mechanisms have been proposed to explain this
trajectory.

First, it is well known that the planetary beta effect initially induces a southward
motion on islolated axisymetric anticyclones. However, numerical studies have shown
that this motion is too weak and other mechanisms must biý considered to explain
the observed trajectories (Beckmann & Kase, 89).

Hogg and Stommel (89) showed that the meddy could have been advected south-
ward by the mean upper layer current. Their mechanism rely on the presence of a
strong enough vortex in the upper layer to trap the mediterranean lens. However,
they have neglected the effect of the mean deviation of the interface due to the mean
current. We shall show that, in the context of a three layer Quasi-Geostrophic model,
this effect can in fact modify the beta coefficient in the layer of the meddy. This in-
duces a propagation in the direction of the mean current without the need of potential
vorticity in the upper layer.

Colin de Verdiere (92) has proposed an interesting mechanism based on lateral
mixing. However, some numerical experiments are needed to quantify the importance
of this process.

Equatiors of the model

We assume that meddiCS are well represented by a three layer quasi-geostrophic
ocean. This hypothesis is certainly verified for the upper and lower layers but is
questionnable in the meddy itself. However, we expect it has not a very important
consequence on the displacement of the lens. We make the beta plane approximation
and consider a North-South constant bottom slope, so that both beta and topographic
beta act along the same direction. We consider a state of reference with a constant
mean velocity field in the upper layer U1 along the x axis and no motion in the layer
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of the meddy and below. The equations for the streamfuction in each layer are:

at PVi + J(Vi - Uiy, PVi + AY) = 0with

J(a, 6) =&&b8a

PV1 = 0+ M 2 -
Pl'2 = V20 2 + MI(N1 - 0 2) + f3(03 - 02)
PV3  - 3 + A(02 - 3)

In these dimensional equations, f, = f 2 /g1 H1, f2 = f 2 /g1 H2, f3 =f2/92H2,
f = f 2/g2 H3 , with g1 = (p2 - pi)/pg3, 92 = (P3 - P2)/P3g and 1 = 13 + fiU, ,
012 = I3 - f 2U1, 83 = 1 + fs/lf3.

Many studies were done on the role of the planetary beta effect and underline the
influence of the horizontal and vertical structure of the vortex on the propagation
speed. We will not discuss this effect here. For details, the reader is refered to Flierl
et al (80), McWilliams & Flierl (79), Flierl (84) and Beckmann & Kase (89).

In the previous formulation, we have thrown into relief the influence of a mean
upper layer current. Indeed, in the layer of the meddy (layer 2), the beta effect is
modified by the slope of the interface due to the upper layer mean velocity field. For
instance if U, > O/f2 we expect the propagation of the lens under the effect of beta
and mean velocity to be eastward even if the meddy is not trapped by an upper layer
vortex. This can of course be generalized to any direction of the mean velocity field.
If U, is strong enough, the meddy will move in the direction of the upper layer speed.
The critical value when U1 becomes as important as beta is about Uf"' - 4cm.j-
for data chosen from Armi et al (89): 1 = 2. 10- m-.s-, f = 7.3 10-5 a-,
H2 = 1000 m, g, = 10-2 m.s-2 . Thus we expect that a mean velocity field will have
a serious consequence on the displacement of a rneddy. We are presently undertaking
numerical experiments to quantify this effect.

We would like to point out that this mechanism also provides the possibility of
time variations in the "equivalent" beta in the layer of the lens and can thus explain
some irregularities in the observed trajectories (though these irregularities have been
succesfully explained as instability events during the life of meddies by Beckmann &
Kase, 89).

3 Isolated modons

As they have very long lifetimes, coherent structures such as meddies, have some-
times been modelled as modons, that is to say vortices steadily propagating under
the influence of the planetary beta. In this section we are looking for strong interme-
diate structure steadily translating under the effect of a bottom slope (i01 = 02 = 0,
13 = -L. There are many reasons for that. First, there are good corellations between
the trajectory of meddy Sharon and isobathes (see Morel 94). Also, the beta topo-
graphic effect is known to be equivalent to the planetary beta for barotropic flows.
When stratification is taken into account, this no longer holds and the differences are
certainly interesting. Last but not least, the principle of the calculations are the same
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if one wants to consider modons on a beta plane with an effect of a mean velocity field
in the upper layer. It can be shown that the speed of displacement d can only be
along the x axis. Replacing the t derivatives by -CO, and using a frame translating
with the structure, the previous equations become (see Flierl et al, 89):

J(O -UY CY Pi pg)= 0

This simply states that there is a functional relationship between the total poten-
tial vorticity and the streaklines (lines of constant Oj - Ujy + Cy):

PVj + fiy = iO- y+C)

If we assume that the eddy is isolated (Vi and P1' are nul at infinity), the functions
F, can be evaluated on every streakline that extends to infinity: Fi(Z) = aZC-Uj

For closed streaklines, the function F, can have a different form and can be mul-
tivalued. To simplify the problem, we will only consider a multivalued function for
the second layer. This can be understood as an hypothesis of no "potential vorticity
anomaly" in the upper and lower layers: particules in these layers have the same
potential vorticity as they will have if they were at rest. Also, it permits the mo-
tion in these layers to be weak enough, so that there are no closed streaklines and
no particles carried along. We only consider strong potential vorticity anomaly and
particles transport in the layer of the meddy. Finally, to make analytical progress
we will only consider linear functions F2 (Z) = S Z + Q and a matching boundary
between closed and exteuding to infinity streaklines that is a circle of radius a, as in
the previous studies on modons (see Flierl et al, 80). Thus the problem we will have
to solve is the following:

P = 0

P V3  03 0~3C
PV 2=S (5 2 +CY)+Qforr'< a.
PV2 = 0 for r > a.

As for modons under the effect of planetary beta, we can find steadily translating
structures for various values of C (negative and positive). The first two equations are
the same we studied in Morel (94). When studying the propagation of "almost steady
vortices" (generating a weak Rossby waves field), some authors have considered the
case of strongly isolated vortices, i.e. for which the axisymetric part of the velocity
field is null beyond a certain radius R (see Swaters & Flierl, 91; Sutyrin & Flierl and
Sutyrin, 94). We have shown that in that case, the displacement speed is determined
so that V, and 03 are proportional. We obtained:

C= #13
fA -

So that C is positive or negative, depending on the surrounding hydrological data
(fi and f4) and the slope of the bottom.

It is however not possible to have strongly isolated axisymetric part with the
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"simple" model just described. We do not want to enter into all the details but let us
just point out that this is due to a lack of degrees of freedom. We found a way to add
more degrees of freedom in the model (as many as wanted!) and that still permits
analytical calculations. The principle is very simple in fact and consist of using many
regions separated by closed circular streaklines inside of which we can choose other
values for S and Q. This adds two degrees of freedom for each new region. It can
be shown that for our problem (to have strongly isolated solutions) we must add at
least two more regions. On each boundary we will have to solve a set of non-linear
equations that is overdetermined.

We would like to point out that this new method is very close to Contour Dynamics
models (see Sutyrin & Flierl) because there is a jump of potential vorticity on each
boundary. Also the modons with riders (superimposed axisymetric part) that were
found by Flierl et al (80) were proved to be unstable (Swenson, 86). We believe
that this new method can yield the possibility of finding steadily translating modons
with stable riders: it adds a lot of degrees of freedom and thus permits considerable
modifications in the rider part.

4 Rotating tank experiments

To test the previous formula giving the propagation speed, we made exi -'riments on
the Coriolis rotating tank in Grenoble. This tank is 13 m. diameter and permits the
use of low rotation rates.

We injected an intermediate density water in a two-layer stratified fluid above a
slopping bottom (see fig. 1). Several experiments were realised in the following ranges
of parameters: density difference between upper and lower layers a Z_ 0.3 - 1.1%,
upper layer thickness H, r 10 - 25cm, lower layer thickness H3 = 15- 45cm, bottom
slopes s = 3- 10%. The rotation period for the tank was 100 a. Twenty to fifty liters
of intermediate density water were injected within 10 minutes. The radius of the lens
we obtained depended on the stratification but roughly ranged between 40 and 80
cm, giving a maximum thickness of about 5 cm for the lens.

fig.h: Sketch of the experiment. An intermediate density water is injected verti-
cally in a two-layer stratified background.

5



a

fig.2: Two meddies propagating in different directions. The arows indicate the
shallow waters, the small circles indicate the initial position. Notice als~o the velocity
field in each layer: anticyclonic in the uipper layer (green line), strong anticyclone in
the intermediate layer (red line), cyclonic in the lower layer (blue).

a/ slope s=8%, H, = 16 cm, H3 = 27 cm, pi = 0%, P2 = 0.5%, p3 = 0.8%.
b/ slope s=3%, H, = 15 cm, H13 = 27 cim, p, 0%, p2 = 0.4%, p3 = 0.5%.
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As in Bormans (92), the injection of intermediate fluid was vertical, so that the
fluid sinked, adjusted (see McWilliams, 88 for an explanation of the adjustment mech-
anism) and a stable anticyclonic lens was created. We used dye to follow its displace- 4
inent. There was also an anticyclonic (cyclonic) motion in the upper (lower) layer
(see fig.2 a-b). Usually the lens began to move during the injection. The propagation
speeds we get were always well below the predicted one but we have found lenses
propagating with deep waters on their right as well as on their left. The order of
magnitude of the propagation speed was about half a radius of the lens (ý± 30cm.)
within 6 rotation of the tank (600s.). As in Bormans (92), weakly unstable events
(filaments shedding) sometimes occured for thick lenses,

We would like to point out that in comparison with oceanic meddies, our lenses
had a much lower lifetime (non-dimensionalised by the rotation period). Indeed. we
observed that after about 10 rotations of the tank the Rossby number decreased by
a factor 3 and after 50 rotations, the flow in the lens was hardly visible.

5 Conclusion

In this paper we described an analytical theory we developped to evaluate the effect
of a bottom slope on the propagation of meddies. This model can be generalized to
study the effect of an upper layer mean velocity field. In particular it can perhaps
yield new results as far as modons with riders ale considered.

Experiments in the Coriolis rotating tank were realized to test for this model. Inl
these experiments, the displacement of the meddies were positive or negative roughly
in agreement with the theory. However, the order of magnitude of the propagation
speed was always well below the predicted one.

We began numerical experiments with a three layer Quasi-Geostrophic model to
test the non-stationary evolution of meddies. When initiating an axisymetric vortex
with no or small potential vorticity anomaly in the upper and lower layers, we also
get a displacement in both direction in agreement with the theoretical formula for
the displacement speed. But again, this speed is well below the predicted one in
intensity. We believe we can have a stronger effect of the bottom topography if there
is a stronger initial flow in the lower layer. According to Dewar & Gailliard (94),
several observations show that there might be important deep flow below oceanic
eddies. We have undertaken a study on the propagation of an intermediate vortex
with potential vorticity anomaly in the lower layer.
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Abstract:
New experimental data on the structure of the turbulent stratified boundary layers have indicated that very
often despite strong mixing, there are strongly ordered structures . A visual confirmation of the
occurrence of such structures in atmospheric boundary layer is given by the ordered "cloud streets"
structures observed in photographs of the earth's cloud cover. Their stratification is rather extreme since
the horizontal extension of these structures reach easily hundreds of kilometers, whereas their heights do
not exceed 3 km.
As these structures encompass a wide range of scales and intensities, we choose thus a universal
multifractal approach, since in this case the mean as well as the extreme events are ruled by few
exponents which we empiricaly determine with the help of data collected by aircraft and radiosondes
during three Typhoon expeditions over South China Sea.
In conclusion, we discuss the rather low critical order of divergence of moments and corresponding low
dressing dimension ruling the self organized criticality of extreme wind shears, temperature gradients and
generation of related structures, in particular typhoons, and their stratification.

1. Data sets and experimental procedure:
We analyzed data profiles on wind fluctuation characteristics of convection in the tropical temperature-
stratified boundary layer.
Horizontal wind speed profiles have been measured using thie aircraft-laboratory IL-18D "Cyclone"
during three Soviet-Vietnamese flying expeditions o-. er the South China Sea in 1988, 1989 (Karmazin
and Mikhailova, 1991) and 1990. Measurements were usually performed on levels increasing from 50
meters up to 5 km heights, along 20-40 km distances, every 0.125 s (i.e. the frequency was wo= 8 Hz and
corresponding spatial distance Ax- 12 m for a speed of - 100 nm/s) in the horizontal for each level across
the largest clouds bands. For our preliminary study we selected one profile per year corresponding to
different meteorological situations (Chigirinskaya at al, 1994) For each profile we studied 10 samples
each of length 2 t0 at a fixed level.
Vertical wind speed profiles have been measured using radiosondes during two expeditions of a research
ship to a tropical part of the Pacific Ocean (Lazarev at al, 1994). All atmospheric variables were
measured along the balloon rise paths, which for simplicity of interpretation, were considered vertical.
The vertical resolution of the balloon sensors was about 20-25 m (data were transmitted every 5 sec of
balloon flight). The time difference between the beginning and the end of balloon flight was neglected.
The data were first interpolated into regularly spaced intervals with vertical resolution of 25 m, and then
averaged over 50 m layers from near the surface to approximately 30-35 kin. The total data base
•U||Ligiiu• s.O' |iuuiVaIU•z pi•UIAiic iJiu: lvl IJtOY atlnu isv ivi~ J~n.•

2. Universal multifractals and multifractal phase transition:
In the case of a stochastic multifractal field, - for example the turbulent energy flux density (e) - observed
at different scale ratios X (=A/I, where A is the outer scale and I is the scale of observation), the

t(On leave from Mathematical and Mechanical Dept., Moscow University, Lenin Hills, 117234 Moscow, Russia).
20n leave from the physics dept., McGill University.
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statistics of the field can be described in the framework of the codimension multifractal formalism
(Schertzer and Lovejoy 1987, 1989, 1992, Schertzer et al. 1991, Mandelbrot 1991) either in terms of
probability distributions or statistical moments, involving respectively the codimension function (c(y)) of
the order of singularities (y) and scaling function (K(q)) of the moments order q:

M - , (Cr) _ (1)

c(y) and K(q) axe dual for the (involutive) Legendre transform (Parisi and Frisch, 1985):

c(Q) = max(qy - K(q)); K(q) = max(qy - c(7)) (2)
1W 1

The only constraints that must be respected. by the two functions c(y) and K(q) are that they should be
both convex, and c(y) should be an increasing function.

Due to the existence of stable and attractive multifractal processes under rather general circumstances,
mixing of different multifractal processes may lead to universal processes which depend on very few
aspects of the initial processes. Indeed -up to a critical order discussed below- these universal multifractal
processes have codimension and moments scaling functions ruled by only three common exponents. The
three basic universal exponent are:
-The Hurst exponent H measuring the degree of non conservation of the mean field,

<ex> . .-11 (3)

-The mean singularity C1, i.e. those contributing to the mean field, measures the fractality/sparseness of
the mean field, it corresponds at the same time to the codimension of the mean field. Therefore (by
Legendre transform) it corresponds to the following fixed point:

c(CI-H1) = CI (4)

- The Ldvy index a determine the extent of muldfractality, it is indeed the Levy index a of the generator
of the process and is proportional to curvature radius of the codimension function around thr mean
singularities:

Rc(Ci-H) =2312 Cl(a (5)

The energy spectrum E(k) of wind velocity fluctuations (Fig. 1, 2) were first computed in order to
estimate the exponent H. The ubiquity of scaling with 135h-53 (close to the Kolmogorov-Obukhov value
513) in the horizontal and [pv-11/5 (excellent agreement with Bolgiano-Obukhov value 11/5) in the
vertical corresponds to the unique anisotropic but scaling regime of atmospheric dynamics as conjectured
in the "unified multifractal model of atmospheric dynamics". There is no evidence for either isotropic
three dimensional nor for isotropic two dimensional turbulence, the atmosphere appears to be anisotropic
but scaling throughout. It should perhaps be recalled that such anisotropic scaling implies that the
atmosphere is progressively more and more stratified at larger and larger scales (see Lazarev at al, 1994
for developed discassion).

Universal multifractal exponents Cl and a can be estimated with the help of the double trace moment
technique (DTM; Lavallde 1991, Lavallde et ai. 1992, 1993). Indeed, we may first consider the
normalized Ti powers of the field e, £('O)X Obviously, 0(1)), will have a moment scaling function K(q,1l):
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( c)A~) , & .,; K(q,?q)=_K(q7)_-q-K(rl) (6)

The DTM indeed will be ruled by the scaling exponent K(qij) (Eq.6) until a critical moment order qD0r1)
(Fig. 3. 4).
In (Chigirinskaya et al., 1994) we discussed the notion of Self Organized Criticality in the context of
stochastic multifractals, as corresponding to a multifractal phase transition and to algebraic or
"hyperbolic" fall-off of the probability distribution:

Pr(Xtx) - x-qD; X>>1 (7)

where the critical order of moment qD corresponds to the following divergence of statistical moments:

<xq>=- qýqD (8)

The analogy (e.g. Tel, 1988, Schuster H. G., 1988) between multifractal exponents and thermodynamic
variables can be made using the following correspondences (Schertzer and I.ovejoy 1991): the singularity
order (y, c(y)) is the analogue of (energy, entropy), whereas (q, K(q)) is the analogue of (inverse of
temperature, thermodynamic potential), the scale ratio is the analogue of the correlation length. And
indeed, the first order multifractal transition corresponds to the fact that for a finite qD and corresponding
fo, the effective scale ratio will diverge as the correlation length for thermodynamic phase transition.
Indeed, the scale of observation becomes irrelevant since the D-integration becomes unable to smooth
singularities "7"D•, i.e. the small scale activity is dominant. Only the scale of homogeneity of the
phenomena remains relevant and its corresponding ratio diverges for fully developed cascades.
We therefore have a clear framework in order to study the coherent or ordered tropical structures as
(stochastic) self organized critical structures. Indeed, we first may define structures by the order of the
singularity of their flux (scale by scale and intensity by intensity), i.e. filtering out the rest of the field
having flux singularities smaller than a given order of singularity. Self organized critical structures are
then those having avalanche-like fluxes, i.e. corresponding to singularities higher than the critical yD. We
will estimate this critical singularity and the corresponding analogue of critical temperature.

The probability distribution function of wind shear Pr(AV2Av), plotted in Fig. 5 on log-log axes for
different thresholds (Av), exhibit nearly the same type of Self Organized Criticality under the expression
of "hyperbolic intermittency", but over a wider range of intensities since our data set is much larger (ours
involves -105 measurements, theirs only -5X103).
For comparison, the straight lines corresponding to the best fit to the algebraic fall-off (for probability

levels < 10-2.5) are displayed on Fig.5 leading us to an initial estimate qD - 5.0 ±.2. Thiis is surprisingly
close to the previous results (Schertzer and Lovejoy, 1983, 1985), who had found the similar slopes in the
range of separations 50m 5 Az 5 3200m with qD - 5.0, i.e. no preferred scale and convergence of
moments only up to - 5th order.
In order to compute the codimension function, we use a single scale implementation of the Probability
Multiple Scaling (PDMS Lavallde et al 1991) technique which estimates c(/) as:

c(7) -, -Log(Prl ex >ýCf)/Log(x,) (9)

i.e. it ignores a possible slowly varying prefactors of the probability in the definition of c(y). In Fig. 6 c(T)
calculated from the probability distribution is presented.

3Other quanities which were also found to display vertical scaling and divergence of moments were the potential temperature
and gradient Richardson numbers.



4

The slope of the asymptote (7'yŽ0) of the resulting curves gives us qD=2A.4 ±0.05 (Fig. 7)in close
agreement (see table 1) with estimates of wind tunnel experiments. With the estimates of the previous
section of a, and C l,, we obtain for the critical singularity of the transition to the self-organized critical
behaviour: yD=0.7±0.05. The corresponding transition for the velocity field occurs for qDv= 3qD=7±l
and yD.v= y1/3-H -- 0.1±0.02. Finally, we may note that the dimension of integration (the "dressing
dimension") leading to this phase transition, is the implicit solution of:

K(qD)=D(qD- 1) (10)

using the estimates of av and C1,e, one obtains: D-0.51±0.1.
We can now compare our results with those obtained earlier in time (Schmitt et al 1993), this is shown

in tables 1 a, b below.

V a Horizontal L
(this paper) (part I) (Schmitt et al 1993)

a 1.85±.05 1.35±0.07 1.50±0.05
C 1,e 0.59±0.05 0.30±-0.05 0.25±0.05
H 0.600±. 1" 0.33±0.03 0.33±0.03
qDi+ 1.7±0.1 2.3±0.3 2.5±0.3

1.28±0.05 0.70±0.05 0.70±0.05

Td.s,e(Ds-O) # 0.94±.05 0.72.+05 0.68±.05

Id,s,&(Ds=0. 5 ) # 1.26±"05 0 0.88±-05

'Yd,se(Ds=l) # 1 ± 1.16±-05
Dt .91I:" 1 .51±.1 .46±.1
Tae a: Comparison of universal multifractal indices (including the dressing dimension D) for kinetic
?nergyflux in the atmosphere in the vertical, horizontal and time. The underlined values of the maximum
observable (dressed) singularity corresponds roughly to the sizes of the data bases used for the estimates.
+The divergence of moments exponents qD are ob•ained tram the wind field: qDr,--Dv/3.
* This value is the average of 0.6 (spectrum), 0.7 (probability distributions), 0.5 (c(6)), and is equal to the theory value 3/5.
# The td~s,e (D,) corresponds to the maximum observable dressed singularity (see Schertzer and Lovejoy, 1992) for respective
sampling dimension D1f0, .5,1 (Di= Log(NJfl-oEQ.)).
**This value is obtained by K'(qDe).
t Ibe dressing dimension D is obtained as solution of the implicit equation K(qDx)= D(qDD-1)

Vertigal HoionaTIMe
(this paper) (part 1) (Schmitt et al 1993)

a 1.85..05 1.35±-0.07 1.50±0.05

Clv* 0.078±+0.01 0.068±0.01 0.05±0.01
H 0.60±-0.1 0.33±0.03 0.33±0.03
qDV** 5±0.2 7.0±1 7.5±1

TD,v +0.07+.03 -0. 1 .A2 -. 0± "03

7d.s.v(Ds--0) -0.15+-05 0.0GO5 -0.04±.05

Yd,s,v(Ds=0.5) -0.04E05 0 0.03±.05

7d.sv(Ds=l) 0 0.15±.05 0J10:Q0
Dvt .33±.1 .22.:. 1 .20±.l

Table lb: Comparison of universal mulifractal indices for veloci,-y in the atmosphere in the vertical,
horizontal and time.
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Calculated from C l.v=C IE 3-co.
** qDv= 3 qD.r
t The dressing dimension Dv is obtained as solution of the implicit equation: KV(qDv)= Dv(qD,v-1).

In the table we have shown the values of yd,s corresponding to a single sample (Ds=0) and increasing
sample size (calculated from cd('Yd.s)=D+Ds, D is the dimension of the observing space = 1 in all these
cases). Note that for single samples, the divergence cannot be detected in the vertical (yd,s<yD) and it is
marginally detectable in the horizontal and in time (,yd,s-tD). Another interesting point is that the critical
order of singularity for the divergence of moments of the wind field (yD,v) is consistently close to the
value 0., i.e. the corresponding velocity is rather scale invariant.

3. Conckusion:
The combination of aircraft analyses with the radiosonde results performed on data collected in the same
area and period, gave us the unique opportunity to test the unified multifractal model of atmospheric
dynamics with data with essentially the same meteorological and climatological characteristics. Using a
single generator of anisotropy, our model unifies the small and large scale horizontal and vertical
structures by a single anisotropic scaling regime rather than two separate isotropic 2D and 3D regimes.
For intensities near the mean, we reconfirm that the mono-fractal exponent H (characterizing the
deviation of the velocities from the conserved energy and buoyancy fluxes) are close to the theoretical
values obtained by dimensional arguments: Hh = 1/3, Hv= 3/5. Empirically, we find that the other
monofractat exponent C1 (characterizing the sparseness of the mean) is transformed from the horizontal
to the vertical using the anisotropy implied by the different H values: Ct,h = Hv Cl,v /Hh. The original
unified scaling model is therefore adequate for singularities, not too far from the mean (i.e. for riot too
extreme events), and this in tropics as well as in the mid latitudes.
However, using the Double Trace Moment technique, we obtained convincing results showing that the
multifracal index. a was not the same for vertical and horizontal (and also probably different from that in
time) and as a consequence we obtain somewhat different behaviours for the extreme fluctuations
(associated with Self Organized Critical structures) along the vertical when compared to the horizontal.
In order to account for this effect, we must go beyond the original scalar framework in order to take into
account a more complex balance between the fundamental shears and buoyancy forces
Anyway, the underlying dynamical multifractal processes undergoes a first order phase transition, which
explains the appearance of self-organized critical structures in a stochastic manner contrary to the usual
deterministic models of self-organized criticality. We therefore propose to identify (scale by scale) the
different types of structures by the order of singularities of their associated fluxes. In particular the
critical singularity at which the phase transition occurs defines the self-organized critical structures whose
dynamics - contrary to the weaker structures - are dominated by the small scale interactions. The
apparent constancy of yD values suggests that they are new universal exponents. In addition, the fact that
the yThv values for the horizontal, vertical and time are (to within experimental precision) the same (see
table 1.) may be significant. This opens an original way of understanding not only the generation of
cyclones and other tropical structures, bt't more generally of coherent structures.
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Fig. I The spectrum of horizontal wind velocity fluctuations, Fig. 2. The mean spectrum of 287 radiosondes at 50nm
averaged over the 3 data sets taken raughly at one year resolution, over a total depth of 13.3km. The straight line is
interval (each contains 10 samples) and also 3 individual for reference with slope -2.2.
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Fig. 3. A plot of Log(K(ilij)) vs. Log(rl) for q=1.5 and q--2 Fig. 4. Results of the DTM analysis with q=.2.5. 2, 1.5 , top
(bottom to top). The aF is then estimated as the slope of to bottom. respectively.
Log(K(qTj)) vs. Log(ij). C, from the intercept with the
vertical axis. We display the straight line widl corresponding
equation y=-0.91+1.35x.
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STABILITY CRITERION OF A STRATIFIED TWO-LAYER SHEAR FLOW
WITH HYPERBOLIC-TANGENT VELOCITY PROFILE

Shuzo NISHIDA ' and Shizuo YOSHIDA 2

Department of Civil Engineering, Hachiiiohe Institute of Technology, Hachinohe 031, Japan
2 Department of Engineering Science, Hokkaido University, Sapporo 060, Japan

ABSTRACT

We investigate the stability criteria of a two-layer shem flow on the basis of linear
stability theory considering viscosity. The numerical calculation was made for
10 - Re - 2000. The inclusion of viscosity effects enables the neutral curves derived by
Holmboe and Hazel to be closed in the ( a , R ) plane; as a result there exists a critical
Richardson number Ric, above which the flow is stable for all wavenumbers. The critical
Richardson number is nearly constant for 20 < Re < 1000, and the stability criterion can be
represented as approximately Ric = 1.4. The parameter 0 ( Ri / Re ) 1/3, which
corresponds to the Keulegan number, is found to be approximately proportional to Re /
The results agree qualitatively with those of Ippen & Harleman's experiment for lower layer
flow on slopes, and experimental results for upper layer flow in an open channel also
support the present numerical results. Applying the a Rt expansion method of the
asymptotic analysis, we obtained the results that Ric is approximately proportional to Re for
small Re; the stability criterion is represented by 0 = const.

1. INTRODUCTION

Many theoretical studies on the stability of inviscid and continuously stratified shear
flows have been performed, presenting much new knowledge about such flows. One of
the most important results is the sufficient condition for stability which states that the
gradient Richardson number Ri' must be greater than 1/4 everywhere throughout the flow (
Miles ( 1) ). Moreover, it has been shown that the stability criterion can be generally
described as Rio' = 1/4, where Rio' is the Richardson number defined as Ri' at the center of
the transition layer ( Drazin & Howard (31).

Stability of an inviscid two-layer flow with a density gap and tangential stress at the
interface was studied theoretically by Iiolmboe , and numerically by Hazel )
However, though their results showed that the flow is always unstable for some
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wavenumbers, they did not provide a u L.
definition of the critical Richardson neutral cuvvv

number, as shown in Figs-l, 2. This 1 1 7
suggests a need to study stability analysis2=E 0.6
account for viscosity. (6)

Hayakawa & Unny studied the unstablo

stability of two-layer shear flow,
accounting for viscosity. As the la 2

stability parameter, however, they
adopted not the Richardson number but Fig.i luv ow model and resulting notraI
othcr parameters also including the wave
number. As a result, the critical -
Reynolds number or the critical 4 neutral curve

Richardson number did not appear
explicitly ; they concluded from this no
critical value existed. Their results, 2 uo

however, can not explain experimental / t .lg u

results which show that interfacial waves
are always generated once the velocity o I a 2a
difference between upper and lower
layers has passed a critical value ( e.g. Fig.2 Flow model and rcsulting ncutral
experiments of Browaud & Winant € curve by Hazel
and Yoshida (16)

In this paper we numerically investigate the stability criterion of two-layer shear flow
on the basis of the linear stability theory considering viscosity, and represent the stability
criterion as the function of Ri and Re.

2. EIGEN1PVALUE EQUATION

We consider a two-dimensioval incompressible parallel flow with a velocity profile

U *= V tan(y * / h) ()

which is a statically stable two-layer system with densities of fluids P i and p 2 ( P < P

2 ) in the upper and lower layer, respectively. Supposing a two-layer flow such as a
fresh-saline water system, we ignore the surface tension at the interface and the difference
in kinematic viscosities. If we take the dimensionless stream function of disturbance as
0 (y)exp{i a (x-Ct)}, the well-known Orr-Sommerfeld equation for each layer is deduced
with a linearization procedure:

(U - - a'01) - U"¢, 0 1 , - 1' + a'i,) (2)
(U - C)•O' - a0) - U", = ( - 20 + a402)

where U is the dimensionless velocity profile given by U - tanh(y), C ( Cr+iCi ) the

-2-
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dimensionless complex phase velocity, a the dimensionless wavenumber, Re the Reynolds
numbei defined by Re = hV/ V , and primes denote differentiation with respect to the
dimensionless height y.

From the continuities of velocity and stress at the interface, boundary conditions can
be obtained as

,=z-Ozo (y=+ao)

(U- C= ( - - 01)(U-C) (U -C (U C(3)

ivt" + ya{J,(U-- C - 3ia) OL - yp.(,'Ol

i02" + a{(&(U- C) - 3ia}l 0 - a U'2- aR, (Y 0)

where Ir = PI / P 2 is the density ratio, J% = (I- -f )gh/V 2 the Richardson number, and g
the gravitational acceleration. Since Eqs.(3) show that effects of changes of -' on the
stability can be disregarded except the term containing g in our flow field, we let - be the
constant value 0.99 ( Boussinesq approximation ). Thus we obtain the cigenvalue
equation from the boundary conditions as follows:

1,(cr, C, R., A,) I 0 (4)

Particular solutions of the Orr-Sommerfeld equation are solved with a numerical
integration following the Runge-Kutta-Gill procedure. In carrying out the calculation, we
took the asymptotic solution at y = ± 3 (or ± 5 when C is large) as the initial value.
Furthermore, to overcome the parasitic growth problem ( Drazin & Reid (4 ), we made
rearrangements of viscid and inviscid solutions at every 5 or 10 steps using the filtering
method descrived by Betchov and Criminale "• so that independent particular solutions at
the interface can be obtained.

In the case of a inviscid flow, the stability is governed by the Rayleigh equations

0,- 1{(U U-C) 4-.2} O. -0

02 [(U C)+ ,.I o=0(5)

and boundary conditions are written as
€a-=O ('=+oc),

1,- 0 (y= -+),

-1 0, (6)
R,A(u - 0#', - YU'O, = (U - CA - v'U (2- 0) . (y 0 )

U (U- C)~ y0

From these conditions, we can get an eigenvalue equation similar to Eq.(4).
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IA(O, C, R,) 0 (7)

Solutions of the Rayleigh equation were obtained theoretically by the method of Frobenius
(written in Nishida & Yoshida ), and eigenvalues were found numerically using the
solutions.

3. NUMERICAL RESULTS

(1) Neutral curve
Figure 3 shows the neutral curves obtained in the ( a, Ri ) plane for several Re

values. The enclosed area of the curve represents the unstable region and the area outside
represents the stable region. The inviscid flow is unstable in the region bounded by the a
-axis and line Ri= 2 a denoted Re - o. Although Hazel shows that there exist two
neutral points in the case where the ratio of the density scale to the velocity scale is 1/5 for
the inviscid gradually stratified flow, in our results for the two-layer flow there is only one
neutral point. The appearance of the _

neutral carve at high a obtained by
Hazel is due to the existence of a density 1.5.

transition layer, Le. continuity of density Ri S

profile ( Nishida & Yoshida n " ). 1 S
However, considering viscosity, another
neutral point also appears on the high a 2.0 0 tboo 2 1000

side for our calculation, and so the-
neutral curves become ciosed in the ( a , -

Ri ) plane as shown in the figure. As a

the unstable region is reduced with
decreasing Re, we can say that the Fig.3 Neutral curves in the ( a , Ri) plane
viscosity generally has a stabilizing
effect. Moreover Fig.3 suggests that
the stability criterion for our flow system .O OA.. 02
can be almost expressed by Ri alone in an /
the broad range of Re, because the Stubl/

unstable region does not expand much 1.1.0
into the high Ri side, whereas it expands 2D ' .-

considerably into the high a side as Re CL
increases. ,,

Figure 4 shows neutral curves 1.,

described in the ( Re, a ) plane. The 1.2

area bounded by each curve is an
unstable region and the exterior is a ___ ------. 6

stable one. The curve with Ri = 0.0 -IV
corresponds to that of a homogeneous
flow, and this result agrees with the
results of Gotoh . As seen in Fig.4, Fig.4 Neutral curves in the (Re, a ) plane
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the unstable region expands considerably into the high a side in the case of high Re. It
is very interesting that the range of unstable a can expand more than in the homogeneous
system in spite of the fact that our model must be gravitationally stable. The growth rate,
however, is not so large as that of the homogeneous flow.

(2) Stability criterion curve
Figure 5 shows a neutral stability curve drawn in the ( a , Ri ) plane for the case of

Re = 100. As mentioned above, the neutral stability curve is closed in the ( a, Ri )
plane; thus there exists a critical Richardson number Ric, above which the flow is stable for
all wavenumbers. Meanwhile, in the inviscid case the flow is always unstable for some
wavenumbers; thus the critical Richardson number doesn't exist any longer. This is
essentially different from results in continuously stratified shear flows where the density
scale is nearly equal to or greater than the velocity scale. In such cases the stability
criteria can be almost completery described with Rio' = 1/4; this also applies to inviscid
flows.

Figure 6 shows a neutral stability curve drawn in the ( Re, a ) plane for Ri = 1.2.
In this case we can get a critical Reynolds number Rec instead of a critical Richardson
number. In either case we can express the stability criterion by the relation between Ri
and Re.

Figure 7 shows the stability criterion
obtained in the manner described above. As R-
seen from the figure, Ric decreases as Re Stable

increases in the range 50 to 200, and has a 1.0
tendency to increase in the other ranges. Ri
However, the rate of its increase and decrease
is small in the broad range of 20 < Re <
1000; thus considering the cases of usual
experiments, where Re is on the order of 10 0 to . zo
to 10 3 , we can conclude that the stability cc
criterion of two--layer shear flow is hardly Fig.5 Neutral curve fbr R,=100
dependent on the Reynolds lumber and that it
can be represented only by the Richardson
number as approximately Ric = 1.4. It is
very interesting that in spite of the theoretical Stb
necessity for Ric owing to considerations of
the viscosity, Ric for moderate Reynolds a
number is hardly affected by the viscosity. Unstable

However, it is notable that R/- has a tendency W -
to be dependent on Re for the lower Re and
the higher Re. -

Nishida & Yoshida observed the
hyperbolic-tangent type flow of the fresh 0
water layer in an open channel of rectangular RRe

section in exchange flow with a salt water
layer. An LDV and a tracer were used; the Fig.6 Neutral curve for RM=1.2
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obtained profiles fit the tanh profile well. io'
The experimental results for the stability
criterion were in good agreement with the
numerical results in the experimental range Rk
of 20 < Re < 200.

(3) Stability criterion and Keulegan number

Figure 8 shows the stability criterion Unstable

represented by 0 = (Ri 1 Re ) ""/, which
corresponds to the Keulegan number V IF0 10o
non-dimensionized by V. The Oi is Re

usually non-dimensionized by the mean Fig.7 Stability citerion curve
velocity and has been thought a dominant
parameter of stability criteria of two-layer 1oo
flows. Hereafter quantities marked with a
bar represent overall ones such as a depth
or a mean velocity, and quantities without a
bar represent those at specific points
pertaining to the information near the
interface such as a thickness of the 16'- - Uistu be.

transition layer or velocity gap.
The stability criterion has very little

dependence on Re once it is above the 10, io to'
broad range mentioned above; we get a Re
relation approximately as follows; Fi&.8 Stability criterion curve

00C Re-/ (8)

This means that the viscosity does not contributt. to the stability criterion as pointed out by
Keulegan 0 0) , and supports qualitatively the results of Ippen & Harlenan (2) as follows;

O = ke - 1/3 (Ippen & Harleman) (9)

"V---0.127 (Keulegan) (10)

At Re < 20 and 1000 < Re, however, the contribution of Re to the stability criterion
has a tendency to increase, and if there appears a region where the gradient of the stability
criterion curve in the ( Re, Ri ) plane is unity, we will obtain a relation 0 - constant as
m, in, 11OLUd u•u.

4. STABILrIY CRITERION FOR SMALL a Re

Applying the a Re expansion method of the asymptotic analysis by Tatsumi &
Gotoh " ") to our two-layer model, we obtain the following equation for eigenvalues as a
first approximation:

-6
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2C(01+ 2) [a +(01 + 2) R2a +0 0+ 1 - 2]

+ ira ( 1 + 02•-2a) o (a)

with
., L--- a 2 _ i&(C-1) Real(/3li > 0

/02 2 -- a 2 _ iR,(C+ 1) Real( B 2) > 0

This equation agrees with that derived by Hayakawa & Unny Setting Ci 0, we
can get the asymptotic neutral curves and the critical Richardson number for small Re as
shown in Figs.9, 10. The phase velocity Cr and the critical Richardson number Ri are
approximately represented by

Cr = 0.350( Ri / a) (12)

Ric = 0.277Re (13)

Although Cr was slightly dependent on Re for at moderate values ( Nishida &
Yos a (120 ), at low Re, Cr is independent on Re and is approximately proportional to

( Ri / a ) "2. The critical Richardson number is approximately proportional to Re.
This means that the stability criterion at low Re is represented by

0 0.652 (14)

MtO'

Ri0.Ri

0,:. 10O 10 " 10 " -

a Re

Fig.9 Neutmia curves for sniall Re Fis.10 Stability criterion curve for small Re

5. Conclusions

The stability criterion of the two-* layer shear flow has been investigated. The
results obtained from the present study are summarized as follows;
(1) The critical Richardson number Ric hardly changes over a broad range of the Reynolds
number R e, and the stability criterion can be rcpresented as approximately Ric 1.4.
(2) At higher Re, Ric tends to increase as Re increases.

-7-
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(3) The asymptotic solutions for small Re show that Ric is approximately proportional to Re
and stability criterion is represented by the Keulegan number 0 = 0.652.
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Stability of vortices with nonstat'cnary elliptical
streamlines in stratified fluid

E. Gledzer and V. Ponomnaev
Institute of Atmospheric Physics, 109017, Pyzhevsky 3, Moscow, Russia

Abstract
The problem of a stability of oscillating stratified flow with elliptical streamlines is con-

sidered. The parameters of unstable modes are found in dependence of extenual frequency
and stratification of fluid. It is shown that nonstationary strain iate can excite an inst-'bility
for any stratification of fluid.

1 Introduction

Concentrated vorticity regions often appear in high Reynolds num ber flows. The theoretical
and some experimental investigations show a possibility of the 3-D instability of fiow'j with
eUliptical streamlines connected with a resonance between the inertial vortex waves and the
locally imposed strain field [1-6]. It has been proposed that this instability constitute a relevant
mechanism in turbulence that is capable of giving rise to excitations on al scales. The elliptlcal
vorticity regions in external strain flow may be nonstationary [73, arid, in general, a vortex may
be subjected to straining fields with unsteady strain rates.

We fonnulate the problem of stability for oscillating vorticity region, the simplest case of
that is the flow in a flexible elliptical cylinder with periodically changing main axes. The
fluid is assumed to be inviscid and incompressible. The linear stability problem is reduced to

a system of equations with quasi-periodical coefficients. For small ellipticity it is possible to
reduce the governing equations to a Floquet problem. This allows to define the changing of
stability conditions and parameters of unstable modes in dependence of external frequency.

2 Statement of the problem

The equations of motion for inviscid, iicompressible fluid are written as
8uI
a--4- +uVu --- VP + /gT,Tt P

5-T + uVT = 0, (1)

divu = 0.

For the flow in an elliptical cylinder with a border
x2 y2f(x,y, t) = + -1 0 (2)

the boundary condition uni! = 0 take the form

-+ uVf =0 (3)

where n is the normal to the surface (2).

1I



2.1 Basic state

We assume that the cross-section area of a cylinder is not changed in time (ab - const). Then
the solution of (1) - (3) has the form

U = {- &I b-?4- Y + Aý, 0- - -• a2 x - .U , 01,
a2 + a 2 b2

T = yz (4)

where A It describes a flow with the constant vorticity Qt in time dependent strain flow.
We shall consider here the flow of a stably stratified fluid (( > 0).

2.2 The stability equations

We introduce new variables for velocity u, temperature T and pressure p disturbances and for
independent variables x, y, z, t as follows

U ~ / 2p (3gy)1/2 T

x , z dt' ab= = -•, -•, _. = na• -- • 5
a b C dt a42' (5)2

where c =- (ab)'/ 2 .
The linear equations for disturbances take the form ( the primes are omitted henceforth)

air(1+e)(DzL+2j~tu-v)_ ax

(1 - e)(Dv - 2Av + u) 0y'

az'
(C- 2) '12Dw - NO = UZI

(1 - E2 )/ 2 D0 + Nw 0,

divu =0, (6)

where D 9 ± x -= N= a1/2/d is nondimentional Brunt-Vaiaisala
frequency.

We suggest that the eccentricity has the form

C = o cos(wot) (7)

For unbounded flow the system (6) may be transformed by the substitution

u = ýi(t) exp(ik(t)r), (8)

with a vector k (hcost, hsint, x) to the set of ordinarily equations [3,41

d-& kzG
- -. 24 + v,

C_ E + 2uf -- fi,
2lI-



dO N

= = T, - C)1/2(k + k 2), (9)

It contains the coefficients with two periods 27r and 2 ;r'wo.
For small values of eccentricity parameter co we have • = I and taking into account

only the termis of the order I on e and making the transformation to the cylindrical Coordinate

system (r,w, z) we receive the equations

b•p

DUp• + 2Ur - De(u, sin 2Wo + -a, cos 2Wp) =-O-

ap

Dw - NO = -8z

DO + Nw O. (10)

The system (10) is considered in the region

X2 + V22< 1

with the boundary condition Ur(1,Z, V) = 0

We shall seek a solution of equations (10) in the form

u=ZC.u., OZCaOa..11

where u, is the solution of the eigenvalue problem for unperturbed equations (10).
The function set

(u, + iu ,a = (2 + q)J,,+1(hr) cos(kz) exp(in~p),

(ui - ) = (2 - q)Jj-I(hr) cos(kz) exp(inc),

w, = qk Jn(hr) sin(kz) exp(inV)

0. = iN-h Jn(hr) sin(kz) exp(in9) (12)

describes the inertial waves in a stably stratified fluid rotating as a whole and has the imagine

characteristic values iw0 . The "vector" subscript a = {j,n, k} defines the wave numbers on
the variables r, V, z, correspondingly. The index j numbers the roots of the equation

qh--.• + 2nJ,(h) = 0, (13)

following from the boundary condition u,-I.=j = 0.
The frequency w, is connected with disturbances parameters by the relations

w=q 0 -nq 2 = 4- 4a2 k

3 +0 2  a

3
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Figure 1: The general dependence k/h on u; for n, n' 1 and a) N < 1, b) 1 <N <2, C)
2 < NV.

The general picture of spectra for azimuthal wave numbers n = 1 and n' --1 is shown in
Fig. 1. We can mark out three cases. The first case take place for NV < 1 (Fig.l(a)). There
is a coincidence of frequencies for some wave number ratio a, and this leads to instability of
stationary vortex [6,9,101. A coincidence is absent for N- > and instability may be caused by
a resonance with external frequency.

The CaC satisfy to equations

da. _iwa)C A- Co F- V.&( d + in) cos(wot) C&' =0 (14)

This system has a Floquet type.
The general structure of the expression for the interaction coefficients V~,&a shows that they

are nonzero only for azimuthal wave numbers n' = n ± 2 and their values are small if how hin
(6]. Therefore we consider here only the interaction between the modes having the same value
of haci = h,,ec = h. It is does not vanish in the limit h --+ c and can describe the stability of
an unbounded flow or the small scale instability of the vortex in the neighborhood of its core.
The asymptotic value of this coefficient is

_ =1N ýq c (15)

3 Conditions of the instability

At the first order of perturbation theory on parameter Go, we can take into account only the
interaction) between two modes 161 and the system (13) is reduced to the sets of two coupled
equations

- _wc)C, + EO .d+ cos(wot)Ca' 0,
at T

+ iw,)Ca + EOV(d' - i) cos(wot)Ca' = 0 (16)

In the case wo = 0 the solution of equations (16) defines the instability in a stationary
vortex, considered in refs. [1-6].
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Figure 2: The comparison of instability borders for unbounded flow solution (9) (solid lines)
and for approximate solution of (17) (dashed lines). Upper branch for e - 0.5, low branch for

= 0.2.
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0,•. I , : I . .i
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Figure 3: The boirder of instability in dcpenderce of N (E = 0.1) (dashed line). Solid line

corresponds to asymptotic value a = N12c/

The leading instability in flows with elliptical streamlines is defined by the interaction
between the modes having the same wavc numbers [6].

For co << 1 we obtain the instability described by expression for growth rate 6

-0(1- _W )2 - (W ± W2 (17)

4 a 2

They define the resonance conditions for the inertial modes with the frequency w. and the
strain flow frequency wo.

The results of anelyses show that the resoaance condiions for sinwl value C axe Possible
only for w. = ±wo/2. The regions of insLability following from (17) are presented in Fig. 2
for N = 0 (solid lines show the borders calculated according to (9)). These results show that
effective interaction between the modes take place only for q. > 0.

Let us consider the stability of strongly stratified fluid N > 2. In this case the effective
interaction is possible only for large values of aplace for 0' > N/2e61 2 , (wo = 2). This result
corresponds to numerical data, following from equations (9) (see Fig. 3).
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Numerical study of a thermally stratified flow
and its interaction with a conducting wall

C. Posniguel

EDF/LNH, 6 quai Watier BP 49 F-78401 Chatou

SUMMARY

In PWR's, stratified flows may appear. This situation sometimes arises when the flow is non-
isothermal. For piping systems, due to gravity effects, hot water fills the top portion of the pipe section
while the cold and therefore heavier water settles down at the bottom. This particular loading could
partly explain mechanical damages (like cracks) encountered in some piping systems.

Several mock-ups and numerical studies have been performed during the past years. This paper
presents numerical calculations performed on the geometry of the FLUO experiment studied at CEA.
The goal of this work is a better understanding of the stratification phenomena and the wall effects on
temperature phenomena. Indeed previous studies indicated that wall effects or azimuthal fiuxes through
a conducting wall may have to be accounted for.

The numerical study reported in this paper relies on the CFD code ESTET 3.1 developped at
EDF in the past years, coupled with a module (Syrthes 1.0) solving the thermal phenomena inside the
conducting wall. A second aspect looked at is related to the temperature fluctuations which may lead to
thermal stripping. Comparisons between experimental data and numerical simulation are presented.

1. INTRODUCTION

Stveral mock-ups have been used in previous studies [1]i2],[3],[4],[5], to gain some understanding
of parameters likely to influence the stratification phenomena. Theses mock-ups, sometimes full scale, did
point out that wall effects may in some cases play a part in the phenomena. For exemple when a thermal
stratification is being created, wall inertia is taking place. Even when a stable state has been reached, the
conductive well still influences the phenomena, through azimuthal conduction. Indeed transfer through
the wall may be greater than across the sharp fluid interface, where gravity effects reduces the exhange
going on between hot and cold layers. Therefore simulating the global phenomena requires thermal
equations to be solved, both inside fluid and solid regions.

A fairly general purpose development has been proposed [6] to handle the problem. It is based
on the CFD code ESTET 3.1 coupled with a module (Syrthes 1.0) solving the conduction equation inside
the solid wall. The originality of the approach is that ESTET 3.1 uses finite volumes-finites differences
technique on a structured grid while the module Syrthes 1.0 discretizes the thermal equations on an
unstructured grid (triangles in 2D, and tetrahedra in 3D), and uses a finite element technique. This
development hase been used on the present case, indeed one goal of this work is to help validating the
numerical tool. Confronting exper' nental and numerical approaches on a wider range of applications
help increasing the confidence we place in the ability of the numerical tool to predict real situations, for
which experimental approaches turn out to be both difficult and expensive.

Another aspect looked at is related to the temperature fluctuations which may lead to thermal
stripping phenomena. Experimental results show that the amplitude of the fluctuations tends to decreae
when approaching the wall.

2 PRESENTATION OF THE EXPERIMENTAL FACILITY,

A sketch of the experimental facility is presented on figure (1). Made of perspex it allows good
visualisations (Laser techniques can also be used to investigate velocity fields). One side wall is made
of conducting metal. The experimental facility has been built at CEA and all measurements have been
performed by Tenchine and Baroiil [7] at CEA.



.4

Hot-

od Conducting l

-'.5-.I

wall

400m 5mn

Figure I : Geometry of the mock-up FLUO

This small size mock-up (see dimensions in nun), is composed of two legs connected together
with a T junction. A cold flow is injected upwards through the vertical pipe and forms an horizontal
flow after the elbow. A hot flow is injected downwards through the upper vertical pipe. Flow rates and
temperatures of cold and hot legs are monitored to stay as stable as possible. Regarding measurements,
thermocouples have been used for temperature. Two rakes of thermocouples forming a cross (see sketch
1) allow to access temperature profiles. For each experiment, four locations along the x direction have
been studied in detail :20 ram, 60 nmn, 100mm and 160 mm after the T junction. Measurements in the
near wall vicinity are quite challenging.

3 COMPUTATIONAL APPROACH

ESTET is a general purpose code solving the averaged Navier-Stokes equations. Thus, the basic
equations, (mass, momentum and energy conservation) read

Op .OpU_ (

1u ( / tUi +0U\ P ) 10 PPo
= , j/_iA m  + poi- i- o (2)

891 Ory p~ O~ x1  Oxj' ,POX P
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Td a T (Km - pCp uT) (3)

In these equations, Ui are the components of the mean velocity, ui the velocity fluctuation, pj
is the pressure difference from an hydrostatic equilibrium involving a reference density p., T is the mean
temperature, pm and Km are the molecular viscosity and conductivity. The eddy viscosity concept has
been used to close the sytem. It means that Reynolds stress tensor and turbulent heat flux axe assumed
to be colinear to mean strain tensor and mean temperature gradient. Spectral equilibrium as well as
constant energy transfer (of value e) along the inertial subrange is assumed, leading to the following
expressions.
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with

At =pCpL2 and K _p= pCk (k)

The determination of k and c the turbulent kinetic energy and its dissipation rate respectively,
is done by the following transport equations (see Launder [8]).

-O- +Igradk= -

+ Ur -rd iv d((p( + L)iqgra k) +c G-c 7
+e C7 grade di,((p + L-)g., c) +C,, (P + (1 - C.3)G) - Co , (8)

w here :~ ' i) ý ' i i OPe -9 -U• ; , -(k-+i oL6 .)- and G = (9)

The choice of the constant C,3 is still under discussion, For the present calculation, we follow
Viollet [9].

{C, = 1 if G < 0 stable stratified flow
C'.t = 0 if G > 0 unstable stratified flow

This term, relating buoyancy effects and turbulence, is of importance in stratified flows, since
it ensures the stability of such stratified flows by inhibiting the turbulent mixing at the interface.

An equation for the temperature fluct,'ations variance has been used. It relies on a simplified
modelling for the dissipation term (see Rodi ['0]), a&suming a constant ratio R. between dynamincal and
thermal turbulent time scales.

Vol 8 i 02 = a Lt )~ k 2  ) 02L'\ L2 (OT)' 1\2(1(K-+ L ,- +2 --
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Usual boundary conditions appl,. At the wall, a wall function approach is used.
In order to solve tU.voe equations, ESTET uses orthogonal grids. Fairly complex 3D geometries

can be approximated since slanted boundary cells are allowed.

Numerically the code uses a finite differences-finite volumes method based upon a fractional
step technique. Advection is solved by a three dimensional characteristic method. Diffusion is handled
through a spatial splitting technique, and mass conservation is ensured by solving the resulting Poisson
equation with a coijugate residual method. More details about the code ESTET can be found in reference
[11].

The module Syrthes 1.0 is solving the conduction equation within solids with efficient finite
element techniques on non structured grids. The equation to be solved is

COT
SpCP-O = die (k, grad T) + 0,
with lim T(x,y,z,t) = 0,(x,y,z) V (x,y,z) E Q

t-0
and boundary conditions on F = Fd U rq (12)
T(x,y,z,t) = O(z,y,z,t) V (x,y,z) c Id

OT-•-f =q(x, y, z, t) V (xy,z)C_1q

In equation (12) p, Cp, and k, respectively density, specific heat, and conductivity of the solid,
are allowed to vary in space and time. eo is the initial distribution, Ov a heat source, and 0 (Dirichlet)
and q (Neumann) are the boundary conditions. These conditions may also vary with time and space.

For optimisation reasons, elements available are limited to 6 nodes triangles in 2D, and 10
nodes tetrahedra in 3D. The discretization uaed is of iso-P2 type, which means that variables vary
linearly between two nodes of the element. Within each time step an iterative procedure described in [61,
ensures the transfer of information through the interface between the solid and fluid regions.



4 GRIDS USED

As stated earlier, the fluid region is descretized with a rectangular mesh generated here with
the pre-processor CEZANNE. In order to reduce slightly the number of nodes only half of the domain
has been simulated. A previous calculation has shown that lateral walls are not influencing the middle
plane, therefore a symmetry condition has been used. The mesh (see figure 2) chosen is (69 x 10 x 29).
Tests on a coarser mesh and finer meshes indicate that the solution is almost ,nesh independent, when
taking finer meshes than the one chosen here.

Figure 2 Grid used in the fluid region

The mesh of the adjacent solid wall has been generated using the mesh generator SIMAIL. The
mesh (see figure 3) is composed of 12180 tetrahedra and 18997 nodes. It is interesting to note that a
refinement in the region where the steepest gradients are likely to occur has been chosen. This is possible
since the module Syrthes 1.0 allows nodes not to be coincident at the interface between solid and fluid
regions.

Figure 3 Mesh used in the solid region

5 RESULTS OF THE SIMULATION

Four cases have been saiulated iumemically. The following tabic, is pre..nting the operating
conditions corresponding to these cases.



S_ _ ,Cuase I C3mw2 Caes Cu3 4•V. o.o26 0.026 0.o0o26 2

T.W 20 20 1 5 5

Vh. 0.026 0.026 0.026 0.052

T6. 40 3 55 5

Table 1 Test matrix (velocity in m/s and temperature in degree C)

Initially the simulation starts with a field set at a uniformally cold temperature, then at
time 1 = 0, a hot flow is injected through the upper vertical pipe. Due to gravity effect a co-courant
stratification forms downstream. It is interesting to underline the fact that ESTET is able to predict
(like in the experiment) that not counter-flow forms in this particular geometry, although the Froude
number is small enough to allow the creation of such a counter-flow in different geometrics as has been
demonstrated in [5]. After some time, a converged state is reached. Figure 4 presents respectively the
velocity field and the temperature field and the temperature fluctuation variance on the middle plane for
case 4. The hot jet is influencing the incoming cold flow, however for the present cmes it. can be seen that
the mixing between the two layers stays quite small, This is partly due to the faci that at the interface
the stably stratified flow tend to inhibit the turbulent diffusion between the two layers. At the junction,
there is simultaneously high temperature gradients and turbulence Therefore production of temperature
fluctuations exists. Then due to the stable stratification effect, a decrease in the level of temperature
variance is predicted. The same type of figures could be presented for all cases.

Figure 4 Velocity and temperature, and rms temperaturc flurlnations fields on the middle plance

ii



As stat.ed in the introduction, the simulation presented here includes the calculation of the
thermal field within the solid wall. At the beginning, wall thermal inertia is leading to observe temperature
differences between the two sides of the solid wall. However after some time the following isotbermals are
obtained within the wall.

Figure 5 ± Solid temperature in section 100lUm,10s, 20s and IO0s after injection

The same phenomena is illustrated by figure 6, where it is clear that conduction through the
wall takes place and leads to heat the cold fluid layer in contact with the solid wall.

MOOi
Figure 6 Solid temperature

Sonic more quantitative comparisons have been done between experimental data and numerical
results. Pictures 7 to 10 present non dimensional comparisons of temperature profiles and temperature
fluctuations profiles at sections 20mm, 60mm, 100mm and 160mm.
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Figutre 7 Temperature and rms fluctuations profiles tor case 1
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Roegarding the temperature fluctuation attenuation, the calculat~ion is reproducing a decrease in

the level of the temperature variance when approching the wall. Indeed, in th~e simple model used in this

study (see equation 12), the product+ion term is getting smaller due to reduction of t~urbulent, viscosity

when approaching the wall. Moreover the dissipation term is proportionnal too the ratio of e and k which

increases quite a lot, in the vicinity of the wall. The combination of the two trends leads to predict a
strong reduction of the temperature variatnce when approaching the wall.

'+

+)
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Figure 11 Attenuation of the temperature fluctuations when approaching the wall

Figure (11) presents a temperature variance profile (case 4), for a giveni section (here 100mm),
to show the attenuation near when approaching the wall. Interpretation should however be carefully
done, indeed the attenuation being frequency dependent, it seems most unlikely that a simple k - - based
model can re[produce faithfully the phenom-ena happening in that region.

A large eddy simulation, which whould take into account the different eddy size and the
attenuation through the conductive layer would seem mnuch more adequate. Moreover, it would lead
to the prediction of a time dlependant evolution of the temperature (which is really what mechanical
elngincer are looking for), taking inito account the instantaneous inertia of the wall. Such a simulation is
planed in the future.

6 CONCLUSION

A numerical simnulation hia.s been performled with ESTET onI the geometry of experimental
mock-up FLUO studied at CEA. ('omparisons between experiments and calculations agree reasonnably
ivzll onl the mneano temperature, hut an~ accurate simulation of near wall temperature fluctuations will
icquire more work to be done.
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Synopsis

The paper deals with a vertical 2-U model of wind-driven
flow in a water body. The hydrodynamic equations are written
in the conservative :orm in the J3oussinesq approximation
on the assumption of vertical hydrostatic pressure distribu-
tion. The transport equations include advective terms. The
two-equation turbulence closure model based on the equations
for turbulent energy and its dissipation is used. Some results
of the numerical simulations of the wind-induced currents and
their effect on mixing have been presented.

1. introduction

Mixing in stratified water bodies can be conditioned by a
variety of natural factors including wind action and
horizontal shear flow Induced by that, waves (surface and
intevnal ones), unstability etc. An Intensity of a turbulent
mixing is varied considerably in stratified water bodies, such
as lales and reservoirs. Therefore to describe the mixing pro-
cesses in stratified flows with the use of numerical modeling
it is essential to apply such turbulence models which allowa
wide range of phenomena and conditions. On thls account the
two-equation turbulence closure model founded on the two equa-
tions for the turbulent energy and its dissipation is used.

A vertical two-dimensional (2-D) model of laterally ave-
raged stratified flow in an oblong water body was proposed
in the paper[l]. The model was subsequently applied to the sl-
mulation of unsteady stratified flows in a channel [;J and in
an estuary f8,4).

2. Formulation of a vertical plane problem

The plane turbulent stratified flow in a water body is
considered with use of 2-U vertical model [1]. The equations
of momentum, continuity and heat (mass) transport are as
follows:
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the equation of state

p = P tl-6.8x10-6 (T-4) .] ........................... (4)

Here t is the time, (xIx 2) are axis of coordinate, (u1 ,u 2 ) - I

are velocity components, T is the temperature of water, p mi p0
are the density of water and Its reference value, respective-
ly; z is the deviation of a water surface from its undisturbed
position, g Is'the acceleration of gravity, KH and ' are the

coefficients of exchange in the horizontal and vertical di-
rectlons.

The coefficients of the vertical turbulent exchange coef-
ficients are defined by means of the equations of' turbulence
energy and Its disslpation rate
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where e Is the turbulent energy, 6 Is its dissipation rate,
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here H iz an• eddy vlsc~oslty, V) is the mnolec~ular viscos1-

ty. For the system MI-W6) the following boundary conditions
are imposed. On the, wat er surface at x 2 =z(xl ,t):
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The above problem is solved numerically using a semi-

implicit finite-difference scheme, which Is formulated for the
spatially staggered Arakawa C-grid [E]. The calculation algo-
rithm is developed with the use of the fractional step method,
in combination with the double sweep method.

U.Numerical simulatlons

The model was used to simulate a some turbulent shear
flows which are similar to those induced by wind in a water
body. it is assumed that RH = 16 = 0. Some of the calculations

were performed for comparing with the laboratory experimental
data.

The first comparison was done with the experimental re-
sults by W.D.Halnes and D.J.Knapp [6) for wind-driven currents
in a laboratory flume. The results of simulations and measure-
ment data are presented in Fig.1 for the currents at the mi-
ddle part of the flume. The computation was made with the fo-

llowing data: }ew= u h/V = 1900 and 2870, a water depth in the

flume h = Om, the length l=8.0m. here u*=( W/Po) i/2s a

dynamic velocity. The computed 4 ty profiles given in the
Fig.1 are practically the same f. experiments.

The second comparison was cai.. out for the shear stra-
tified flow in the annular flume under a rotating lid at the
conditions of the R.Lato and 0.M.Phillips experiments (7). it
is worth to remind that the experiments were conducted with a
constant shear stress at the lid upon the the surface of wa-
ter in the flume. At the initial moment of rest the salt water
layer has a linear density distribution over the depth.

To simulate the case the computation was carrle out with
a value of the density gradient Op/ix 2 = 1 .VPxQU1 g/cm /cm, the

lid stress LC =O.99 gynes/cm., the depth h=O.Sm. For numerical

simulation it is assumed that a concentration of salt In water
is proportional to the salt water density and that the coeffi-
cient of the turbulent diffuslvlty of salt in water is equal
to the turbulent thermal diffusivity. The computational re-
sults are given In Fig. 2.

The qualitative comparison of the computational results
with the experimental data shows that the theory describes
satisfactory the process of motion generation observed In the
experiment. initially the turbulent shear flow is generated in
the upper layer of linearly-stratified fluid. Then it pene-
trates into the underlying quiescent fluid. Similar to the ex-
perimental data, the computation ones reveals a significant
variation of th' density at the lower part of mixing layer and
the fluid re' ed under it. The evolution of mixing layer depth
computed is luantitac.ively in a rather good agreement with the
experiment.

Mnxt the computations were performed to simulate the
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wind-induced currents In a plane oblong water body of rectan-
gular form. At first the computations were carried out for the
homogeneous fluid (p = const). The currents in a deep water
body lenith of 1000 m and depth of 100m are compared with that
in a similar water body of a smaller size (20m and 2m, respec-
tively). In both cases the wind velocity is the same: 10 m/s.
The wind shear stress is determined according the relation-
ship,

EW /pO =8.2bxOI6 w' (w. is the wind velocity In m/s).

Fig. 3 presents the computed velocity field (a,c) and the
eddy viscosity distribution (b,d) for the terminal, steady-
state situation. At the depth of 100m the turbulent mixed lay-
er penetrates only into the upper part of the water volume. In
the case when the depth equals 2m the turbulent mixing occupi-
es all volume.

Then an unsteady flow in a deep stratified water body was
considered. The fluid is assumed to be initially at res• with
linear stratificatiar, ( the surface temperature of 20 C and
the bottom one of 10 C). The water currents are induced by

the same wind speed of 10 m'/s.
The results of computation are presented in Fig. 4 with

t~e use of the following non-dimenslonal parameters:
K =[1O0/(u~h)]1v - the normalized dimensionless eddy viscosityS2
and to= (u,/h)t (u*= c /pc) - the dimensionless time. It is

seen that the recirculation area coincides with the turbulent
mixing area.I3oth are located in upper part of water volume.
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Layer Formation in Stratified Circula-
Couette Flow

B. M. Boubnc4v E. B. Gledzer* and E. J. Hopfingert

Abstract

The stability of circular Coue.'Le flow with axial density stratification, har-
acterized by the buoyancy frequency N, is considered for different values of tbe
non-dimensional width gap e between the cylinders. It is shown that onret of in-
stability and the structure of the resulting flow regimes, iarnely riou-axisymntetric
vortices, Taylor vortices ano the related layer formation strongly depend on N in,
addition to Reynolds number and e.

1 Introduction
One of the classical hydrodynamic stability proble•ns of major importance is the
flow of fluid confmned to the annulus between concentric, rotating cylinderG. Since
the pioneering works by Couette (1890) and Taylor (1i23) A very large number of
experimental and thcoretical studies have- considered differenm aspects of iastability
and transitions of this flow ,onfiguratioa (see for luptauce 1), Prima & SwianeyA 981;
Andereck ot al.,1986; Chossist & Tnocs,1994).½.rious modifications of this problem
have also received considerable attention and these include the influence of axial
flow (Gravas & Martin,1978; Lueptov et al.,i992), uisteadyness of the rotatin
rate (Cooper et al.,I 985) and the effect of radial temaperature or density va:ia--
tions with and without an axial gra-itational field (Snyder & Karhlson,1964; Yao &
Itogers,1989; Kubotaui et al.,1989; Ali & Weidmaa,1990).

In the simplest cme of Couet.r-Taylor flow, with only the inner cylilder ro-
tating, a variety of different regimes are observed: Taylor vortices, wavy voetices,
modulated wavy vortices, turbulent Taylor vortices. When additional effecwe are
included (Coriolin force, velocity shear, radial density stratificatiou etc.) significant
changes in stability occur and the flow states reveal a reach variety of phenomena
( e.g. Andereck et aL.,1985, found more than fifteen principal flow regimes between
independently rotating cylinders in homogeneous fluid). Surprisingly, the case of
the interaction of centrifugal and buuyalicy forces - Cou-tte fl 'v with axial density
stratification has not received any attention.

The aim of this work is to study experinaentallv and with tho help of linear
stability theory, the instabilities and transition regimes in Couette flow with axial,
linear density statificaLion for the case when only thc innr 'yiUnier rotates. Ir is
shown that density stratification has a strong effect on the onset 1f instability and
the resulting vortex structures giving ris. to layer formation. It is noteworthy to

*lutitute of Atnospheric Physics,109017,Moscow,Ruasia
'LEGI/IMG, CNRS-UJF-INPG, B.P. 53 X, 38041 Grenoble Cedex, France
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mention that descrete layers are formed and the results are thought to be relevant
for equatorial zow'l jet formation.

The instability and flow states of the small gap problem have been treated
in some detail in Boubnov et al., (1994). Here, we will put more attention on
the influence of the gap between the cylinders on the flow instability and layer
formation.

The main non-dimensional parameters of the problem are the usual Reynolds
number Re = 91a(b - a)/v (see e.g. Andereck et aJ.,1985), the non-dimensional
gap width e = k.?a (a and b are the radii of inner and outer cylinders respectively,
Q - rotation rate of the inner cylinder, and the viscosity v is taken constant be-

cause of its weak dependence on density). The stratification is expressed by the

Briint-VWiisiilk fiequency N - , 1/2 , (p is the density and g the gravitational

acceleration), and this introduces an additional non-dimensional parameter which
is the Froude number Fr = 01N.

2 Experimental apparatus and procedure

The experimental installation for circular Conette flow in stratified fluid is similar
to those which axc used for studying Couette-Taylor flow in homogeneous fluid.
It consists of long coaxial transparent plexiglass cylinders with the outer cylinder,
the bottom and upper surface being at rest and the inner cylinder rotating with
constant angular velocity Q. The outer" cylinder has an inner radius of b = 51ram,
while three different inner cylinders with outer radii a=20, 30 wnd 40 mm were used,
giving respectively non-dimensional gap widths c=1.55, 0.7 and 0.275. The last case
of c = 0.275 permits to interpret the results within the small gap approximation
theory and is still suitable for the study of the vortex and layer structures. The
length of the cylinders L was taken large enough: L = 573rnm, giving r = L/(b --

a) = 52,27 and 18 for c = 0.275,0.7 and 1.55 rrspectively. In most experiments the
upper surface of the cylinder was rigid, and only in experiments with large density
gradient, when N > 1.5 rad/s, the upper boundary was free, because, in order to
reach a large value of N it was necessary to fill the space between cylinders to a
height less than L. In our experiments, stable density stratificatiou protects against
propagation of disturbances from the top and bottom surfaces to the fluid interior
and there is practically n3 influence of end boundaar conditions on the flow regimes
(which is not the case in non-stratified fluid, where end boundary conditions can
be very important in the onset of instability).

The inner cylinder rotation for a given 12 was maintained constant within 1%
and the value of Q2 could be changed continiously from 0.1 to 3.Trad/s. Constant
cylinder rotation was reached in less than 2s and when S1 <.( t,. a stable, steady
state flow was established in a time of about I minute. The tine for onset of

in-istability of the zonal axisymmetric flow depends how close the rotation rate is to
critical conditions.

Generally, experiments were made by starting with the fluid rest and by setting
the rotacion of the inner cylinder at the desired value. Changing the rotation rate
of this cylinder from one value to another was used only near onset of instability of
the azimutal flow and also in special experiments devoted to studying the variations
uf the formed layer structures and transitions between different regimes.

The linear stratification was accomplished by using s salt solution and the

standard "double-box" tilling method. The time of filling was of the order of two
hours Normally, density measurements were made at four heights, but in somc

2



controlled experiments these measurements were closer spaced. The linearity of
the density profile was also verified with the help of shadowgraph, in which the
outer surface of the inner cylinder appears as a line inclined at some angle to the
vertical, proportional tc, the density gradient. The deviations of the density profiles
from linearity in the main part of the fluid column (0.1 < z/L < 0.9, where z is
the vertical coordinate) were less than 5%. The value of N was changes in the
limits 0.35 < N < 1.78rad/s. After an experiment with one rotation rate 0 was
finished and the formed layer structure was allowed to diffuse, the linearity of the
main stratification was checked and a new experiment could be started.

In order to reduce optical distortions due to the curvature of the cylinder the
apparatus was placed in a large square box filled with water (also, there is water
in the inner cylinder). For the flow visualizations two different and complementary
techniques were used: the shadograph technique, sensitive to the second derivative
of density which allows us to see the horizontally everaged density structures, and
particle streak line methods to visualize the vortex motion. Aluminlum powder and
kalliroscope particles were used in this case. The aluminium particle are almost
isotropic and move together with the fluid and show the motions in the vortices,
while plane kalliroskope flaques outline the total structure of the flow.

3 Narrow gap (E=0.275)

3.1 Experimental results
First we will summarize the observations of flow patterns in the narrow gap ex-
periments e=0.275 ( Boubnov et al.,1994). The regime diagram in &l - N space is
shown in Fig.1.

To produce this diagram we used the following procedure. For each value of
N, the rotation rate (2 was increased by small increments until the critical value
of £2(N) for onset of instability was reached. For fl < f2c(N) the flow has only an
azimuthal component of velocity (circular Couette flow) with no changes in the dep.-
sity field along the vertical axis (regime A, Fig.1). This steady flow is established in
about 1 minute or 5 rotation periods after beginning of rotation of the inner sylin-
der. For 0 Ž !Cl(N) on the other hand, the shadowgraph images indicate vertical
variations in density with the appearance of well identifiable layers of nearly equal
height (Fig.2). By this means it was thus possible to determine nc as a function of
N. In the neutral case of N = 0 the critical value of Cl has been determined from
the onet of motion of particles suspended in the fluid. For the present experimen-
tal conditions SC2(0) ; 0.2, giving a Reynolds number Rec(0) =•- ca(b - a)/V 90,
in agreement with the expected value (Di Prima & Swinney,1981). For N = 0 the
instability of Couette flow is linked with .txisymmetric Taylor vortices of vertical
size equal to the width of the gap.

For stratified Couette flow when N is large enough (N > 0.4) and 0 just above
11c(N), the first unstable structures are of height approyimately equal to one half
of the gap width (na = zt1 ½, region S in Fig.1, nj is the non-dimensional layer
height or layer height factor). The bound of transition between regimes A and S,
i.e. the neutral stability curve is the curve a in Fig.1.

With increasing fl, the usual Taylor vorticies are also appearing. Steady Taylor
vortices with vertical wave length factor n = ' = 1 (k is the vertical wave
number) giving nj = 1 are observed for values of Rl and N ieing in the region T,
Fig.l. Between regions S and T there exists a transition region ST in which both
-eginies with ni : 1/2 and ni = 1 are observed. When we move to larger R (for the

3
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Figure 1: Main instability regimes for stratified circular Couette flow: Experiments with
c 0.275. Theory: - - - -- -, inviscid instability bound for n = 1/2; - - - - -and

--- , viscous instability bounds for n = 1/2 and ni = 1/1 respectively. The solid lines
are included to show more clearly the experimentally observed transitions between the
regimes.

A LA

N

(a) SI = .6s-' (b) f2 0 .9s-- Wc fl - .2s-1 (d) (2 2.4s-

Figure 2: Shadowgraph visualizations of the change in layer height for different angular
velocities Q2 of the inner cylinder for e =0.275, N =1.2s-1. (a), h ;z;(b - a)/2; (c), h ;Zý
(b - a); (d), h ; 2(b - a); (b), transition from h ;ý (b - a)/2 to h (b (- a).

4



same N) the Taylor von icr. heroin mvre &na naje-r .. Itaa. uaw
vortices begin to interact wn b each Akwer k. A tinS aea& -- -a av hi" man
observed in homioenovki. Hind kwc lar 11! n nikzw CP A. T
hi - 2 (b - a ;anrLs with mlu c&cqat,%1% Ta %wit tinm =fant anx; t we" =-mv -

supenimpomcd Thtb -,tht-repuu.CT-=FM I rvxaw - = 2 1r-t- 16 g'.
can !Aw that owe iA unaaM&..' &m te flrbceisa&r betwwwn-kk .~hv j~ v'%r- -

ck~aaCtCnLWd n1 % a zNUý n- - : N : V -* 2a.ZA - ' *.t-nt---M-I

By turthe: .nY.-reaa..n. P MEr oQMapejkcol nAsaM.-Ar ..Ca %G wwwr tkvr "'ra -

egn.ot trkahatKM. I., Itwig WtifALWW flfla & ns. fLa, flivv "T t' av-v
Lb ATr.- 11iteuit to 3dkaj':.r atr ýC as -Nsuw ma'bAriý t: tU~..s AA.*L a~w
that I.: &6. rtgius Ttqia, tbr 5'wC W tf .Wr ittTh K-LfL4 & s Y04

ruuthe .ozdnw: up ;vLýA r- fku -LZ&- Iw -! s-a6' IS C7& 2 dý

NX-123 '. 4=0 275
Very surprvLng ii. tA: :Lc aw: 4.Atonb Z C ', tcC aIttt'-r~e ~

cirrespondang dewtai l&>t: flflcture A be4apt appamuate.ý ýAz -& ': w.

gap width. hi F ig 2'a I.Lutn'r. -br vurtolies in thia repLM~ Mr ist zx

metric an~d have an elijptica. form in -hr pAaaa ;neprxnc-uic -to r e A.Lu -a

cylinders. ThL- means. that is 'urto. tubi us ckbr to the uwi:. rotaLnhk cylmuier on
opposite z.ades of it andi dear to the aonz'otiatg outcr cylmldtr a: p)Oitus 90' awa,>
The neighbouring vortex tube is rotated by 9(r. inn. pair of ve~rtex tubces with the:
same wave length factor va;ý 1/2 produces the layevr structure nj -z112. The layer
height h close to the instability bound depends not only on the gap width but abc
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___ = n, C, ;L3S1(1)
ba N

3.2 Theoretical results

The circular Couettc flow is given by

=O Ar + 0, , o0 = 0,

whe-c

A = -n2 =-Q-- B =-Ab 2=Qa 2  P ; a (2)
ý2 --. 77-11

2

and (ut,, utW, wo) are the velocity components in the cylindrical coordinates system
(r p, z). The density stratification is pg(z) z-Po - az with a = const and, hence,

A;Tý const.
When negl~ecting the diffulsion ý.ermn in the i-ass conservation equation (large

Prandtl or Schmidt number), the linearized equations for axisymmetric (Q9/&9w = 0)
disturbances, periodic in the axial direction axe (Boubnov et al., 1994)

(Ur uvw1 ) (r, zýt 6 (Or, U'P w)(r)et(W±+kz) (3)

Vb- iW)D + i N2-}D + k 2)i (riD - iw)u, - 4k 2 A (A+ B) u ~ (4)
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Figure 3. Critical curve for onset of instability for different gap widths (e: o - 0.275; x -
0.7; L - 1.55). N, is the value of N above which the linear dependence of £Rc(N) on I
is a good first approximation. The solid line is traced only to show the near linearity of
the experimental points.

with boundary conditions

U1,P,-b = (), (M - w)uvlr=a,b =0, •( - iW)Uv1r=a,b - 0 (5)

For inviscid (v = 0) and small gap (t - 1 -ý 0), expressions (4),(5) reduce
to

d2 2 D2 4 __-r2

""N= -- N2
-, 2 -G, G = (kr)-luv, Gjý=0 ,2, ; 0, = a2  , (6)

where the wave number is defined by k = 7r-! and n is the wave length factor.
Hence, - corresponds to the number of vortices on the height equal one gap width.n'

The solution of equation (6) is G = JU1/3( /2i where 71i are the roots

of the Bessel function equation J, (77i) ý. 0 and 77i C (N- 23) • This gives the
3

following conditions for inviscid instability (Im(w) 0 0):

0 :, ,/- 3n(7)

For one vortex across the gap we have 77, ; 2.9. The bounds corresponding to the
right hand side of (7) for n = ½ is shown in Fig.1 by a dashed double-dotted line.
So, above this line the axisymmetric inviscid diSturbancW with r. < _ are unstable.

For the viscous case the results obtaind from (4),(5) for instability of monotonic
type w = is, s < 0 give the bounds shown on Fig.1 by a dotted (for n = 1) and
dashed-dotted (for n = ½) lines. In the neutral case N = 0 the disturbances

I2
with n = T are unstable if 02 > 0.18 that corresponds to the usual estimates (for

= 0.8, 0.2 (see Andereck et al.(1986))).
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4 Wide gaps

In our experimental study we used also two large gaps e = 0.7 and 1.55 which do not
satisfy the small gap approximation. Nevertheless, as in the small gap experiments,
the critical value of fl for onset of instability is also a nearly linear function of N.
The experimental points collapse reasonably well onto one curve when plotted in a
way shown in Fig.4 where N, is the value of N above which the linear dependence
of f20(N) on N is a good first approximation.

The main reason for using wide gaps was to give some answer to the question
whether or not the minimum layer height depends on the gap width. The minimum
layer heights normalized by the gap width b - a are presented in Fig.4. There is a
definite dependence on the gap width with hmi, being about (b- a)/2 for 6 = 0.275
and decreasing to about (b-a)/3 for e = 1.55. It is not clear at this stage whether
hmin depends on e or (b - a) keeping for instance c the same (dependence on
Reynolds number).

The vortex structures and resulting layers in the wide gap e = 1.55 are asym-
metric (Fig.5b) and have the appearance of a double helix as is shown in Fig.5a.
A pair of vortices originates at the inner cylinder and propagate toward the outer
bounday, mixing fluid in between thez-. On the opposite side a density interface
forms in the central plane of the vortex pair. The vortex pairs on diametrally
opposite sides are shifted vertically by one votex size or layer height. How these
join is not clear; a spiral local structure is one possibility. The whole pattern ro-
tates with a constant velocity less than Q. For the large angular velocities the flow
regimes in the large gap case are similar to the Taylor vortices regimes (n = 1) in
the small gap system. Taylor vortices of size equal to the gap width are present (or
interacting Taylor vortices). The main difference here, compared with the small
gap, is stronger turbulent motions and hence more intensive mixing in the layers.
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Stratified Taylor-Couette flow: numerical simulation

P.ORLANDI

Univeraitoi di Romna "Le Sapienza" Diparlimento di Meccanica t Aeronautica, Italy

ABSTRACT

The combined effect of stratification and rotation is very important in several geophysical
applications. For a better understanding of the vortical structures Boubnov et at. (1993)
designed a Taylor-Couette experiment with stable stratification, where the rotation of the
inner cylinder 12 and the frequency N related to the mean vertical density gradient ST,

play opposite effects. By increasing S1 Taylor-Couette instabilities form as recirculating
cells, on the other hand by increasing N the formation of these cells is shifted to higher i2.
As in the flow without stratification, the instabilities depend on the width of the gap. The
purpose of the present study is to perform numerical experiments for the same conditions
as in the real experiments. The numerical validation of the experimental outcome permits
a better understanding of the instabilities. Since the experiments showed no azimuthal
waves, numerical simulations of the axisymmetric case are thought to be a good first
approximation of the real flow.

n. INTRODUCTION

In many geophysical applications the combined effect of density stratifications and rota-
tion give rise to different types of vortical structures. For example in the equatorial -egions
the stratification of the sea seems to be the cause of the observed recirculating cells along
the vertical direction extending in the nord-south direction. In an attempt to understand
the causes for these different cells Boubnov et at. (1993) set-up a Taylor-Couette labora-
tory experiment with stable stratification. This simplified experiment could explain some
of the features of the geophysical flows but also it is a very interesting case per as. A
large number of Taylor-Couette experiments have been performed in a concentric annulus
without stratification, among them one by Gorman and Swinney (1982) devoted to study
the wavy vortex regime, which occurs at Reynolds numbers above the critical Re, at which
the flow goes from the Couette regime to the Taylor-Couette regime.

Numeric,-l simulations were also performed to reproduce these transitions. Marcus
(1984) reproduced the experimental results in the different regimes and Vastano and Moser
(1991) extended the study to the evaluation of the Lyapunov exponents in this closed sys-
tem. Pseudospectral methods were used in these simulations and it is well known that
these methods are very onerous. In the present paper, we used a finite difference scheme,
second order accurate in time and space. The method has been tested by reproducing the
critical Reynolds number for the onset of the Taylor vortices regime and the results were
in good agreement with the experimental results, pseudospectral simulations and linear
stability theory.

In the presence of stratification the aim was to reproduce the f?, N diagram obtained in
the Boubnov et al. experiments. In the small gap case 6 = (b - a)/a = 0.275 the numerical
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simulation confirmed the experimental and the linear stability theory outcome, namely
the linear dependence of fl on N. As in the experiment it was also found that the size
of the Taylor cell increases with 62. That is at low S1 the vertical size of a single roll is
L, = h/(b - a) t 0.5, it becomes L, : 1 for larger S1 and finally Le ,z 2.0. This behavior
was found when the numerical simulations were performed by setting the rotation of the
inner cylinder at the desired speed at t = 0. The time evolution of the maximum of v,
shows that for L, = 0.5 it reaches a steady value. On the other hand for L, = 1, the velocity
oscillates with a single frequency at low R2 and with a large band of frequencies at high
62. For Lc = 2 the frequency spectrum has a large band. All these results were obtained
by axisyinmetric simulations, and this might be a very strong limitation. By changing the
way by which the inner cylinder is put into rotation the scenario was different. At low N
stationary cells with size L = 0.5 and non-stationary with size L4 = 1 were obtained but
no cells with size L4 = 2 are observed. At high N on the contrary only stationary cells with
L4 = 0.5 were obtained. The aim of the simulation was to complement the experimental
observations and to explain the experimental inaccuracies in the distinction between the
different regimes. In fact by flow visualisations Boubnov et at.(1993) produced schematic
plot of streanmfunction, that could be erroneous mainly because of the unsteadiness of the
flow.

2. PHYSICAL MODEL

The Navier-Stokes equations in primitive variables were solved together with the equa-
tion for the perturbed density. By assuming as reference velocity the rotation velocity of
the inner cylinder P2a, as reference length the width gap b -a, and by introducing the quan-
tity a' = (T - To)IST(b - a), with To = S.rz the reference temperature, the dimensionless
equations are:

Dqq 1 Op 1 [ 1 ( O r3 a qe ) 1 82 qe + 2q& 2 _ qJ

Dq,7  Op 1 [r8 (lag". 1 O2q, +2q, 2Oq1

D-- T =E -0-r +Z- r2 C + 1•02"• OZ2•. +
Dq 9) + Op 92q. + 2q,]+ Ria

Doit IST 1 [1..8(8rc0% +r2c 90201Z

with
.0g. 9- +g 1 &rq09'+ 1 84jf2+a 8q.

Dqý, 10. (L2
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Where the Reynolds number is Re = f2(b - a)a/v, the Richadson number is Ri -

(N/fl) 2 [(b - a)/a]2 with N 2 = gST3 and Pr = v/k. The quantity ST is the constant tern-
perature gradient, which when positive accounts for a stable stratification. The continuity
equation with the quantities qi is

Oqr Oqe Oq•S+ O + 7 = 0 (3)
57 09 '9Z

The system of equations was integrated by a numerical scheme based on a fractional step
method. The accuracy was tested for several flows in cylindrical coordinates (Verzicco
& Orlandi 1993). In the present case since there are two horizontal walls we used a
non-uniform grid in the radial direction to capture the vorticity gradients near the walls.
Periodicity was assumed in the vertical direction and its size was changed depending on
fP. At low Q the vertical extension was L, = L/(b - a) = 2 to reproduce the formation of
two and one cells. At higher f2 the size was L, = 4 to capture one cell with L, = 2.

As initial condition we used the Couette profile qe = j--- (,I - ?2 r). Superimposed to
this we introduced a randcm velocity distribution of q, with aniplitude qM = .0125 at
the interior and reduced to one fourth in a layer near the walls. The incompressibility of
the perturbed velocity allows the calculation of qr. The initial perturbed density had a
random distribution similar to that of q.. As initial parameters we assigned the values
of the experiments a, b, S1, v and N, from these quantities Re and Ri were evaluated.
The major part of the simulations were performed by a grid 129 x 129. When the vertical
extension was L, = 4 the mesh size remained unchanged and 257 points were used.

3. RESULTS

In the available literature experimental and numerical results concerning the critical
Reynolds number have been reported for q = a/b = 0.875, different from r = a/b = 0.784
used in the Boubnov's experiment. We therefore evaluated Re, for ri = a/b = 0.875 to check
the quality of the numerical method. The pseudospectral simulations give Re, = 118.4
which is in very good agreement with Re, = 118.2 obtained from the linear stability theory
with a = 3.13. We performed the simulations with random initial disturbances described
above and with L, = 27r/a, using a grid 48 x 48 in r and z. We found Re, = 118.8
corresponding to S2 = 0.52. This critical value was obtained by calculating lOogj9 rmx/ ot,
at different values of 0, after the transient. Whatever the value of qM the short transient
consisted ii, a rapid decay of the disturbances which afterwards either grow or decay,
depending on whether 12 is above or below the critical value. The choice of an initial
random perturbation makes the present simulations closer to what occurs in an experiment.
On the other hand the eigenfunctions of the linear stability theory were generally used in
the previous numerical simulations by Marcus (1984) and Vastano & Moser (1991). This
different choice of the initial perturbation could be the reason for the small difference
between the present Re, = 118.8 and Re, = 118.4 in the pseudospectral simulations. We
think the reason can not be attributed to the accuracy of the numerical method since we
performed grid refined calculations. The dependence of the critical Re. on the vertical size
L, was checked by evaluating the critical fR: for L, = 3 giving fn = 0.56. The results did
not change by introducing a clean disturbance q, = qM sin(27rr) sin(27rz/a) with the radial
distribution still different from that of the eigenfunctions of the linear stability theory.

_____ _ - -
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FIGURE 1 . Critical rotation speed versus N for ~,linear stability theory 6 =0.275;

- x--, linear stability theory 6 = 1.55; present results for 6 = 0.275, ---- and
6=1. .. ..... Boubnov al. exp.,+ ,6=0.275, 8 =1.55.

Boubnov et ail. (1993) evaluated for three values of the non-dimensional gap width how
n,: changes with stratification and they observed that the critical value increased linearly
with N. They performed also linear stability calculation, in the narrow gap case in the
limit of 6 -.- 0 and found the following relationship

-2~0)=3b, L, V/-N (4)

The numerical simulations were performed for non-dimensioeal gap values of 6 = 0.275
and 6 = 155 and respectively, in the non-stratified case, the critical :, were 1 , 0.208
and Q, = 0.111 in perfect agreement with the experiments. In Fig.1 we reported the
experimental and the numerical values of th1ee(N) -auo(0)t(e)- 1. The dependence of nild
on N given by the inviscid linear theory, Eq. (4), is shown for comparison. On plotting
the results of the inviscid theory the values of th(0) for the small and wide gap have
been subtracted. The experimental results collapse reasonably well whereas the numerical
results do not collapse on a single curve. The simulations were done with a 128 x 128 and
a coarse grid but the difference still persisted. At the critical speed the size of the Taylor

Cell was.,, ± V .u.I
It is of interest to investigate whether the size of the cell changes with rotation rate or

Reynolds number. In the experiment Boubnov et a-l. found a strong dependency on f
We know that from flow visualisations, especially when some unsteadiness is prelent, it
is difficult to have a clear picture of the streaeifunction. Moreover, as in all the flows in
closed systems the number of cells could depend on how the inner cylinder reaches the
desired speed. For example it is possible to reach the desired rotation in a very short
transient starting from rest, or the desired rotation can be obtained by different stages
where at each one the simulations are performed for a suficiently long time, usually larger
than 30 rotation periods. We performed, therefore two sets of simulations at N = 0.4 and
N = 1.8 where the final rotation Q = 3.0 was reached in different ways.
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FIGURE 2. Taylor Couette calculatians with 128 x 257 aon-unifurm grid ,; 6 = 0.275,
N = 1.8. The rotation is iTacreased from 0 by successive steps to 9 = 3.0.

Fig.2 shows (solid line) for N = 1.8 that the maximum of the velocity component V,
initially decreases and then increases rapidly end trough an oscillation reaches a steady
state. At this point the rotation of the inner cylinder is increased, oscillations arx again
observable with a smaller amplitude (dashed line) and these are dumped to reach a new
state with a greater velocity. At each stage this behavior is repeated and finally a corndition
is reached with steady cells of size L, = 0.5. On the contraxy when at t = 0 the inner
cylinder is suddenly put into rotation at Q = 3.0, Fig.3 shows that no steady state is
reached and the maximum of V,. oscillates with a lai-ge band of frequencies. Thib condition
is reminiscent ot a turbulent state and it should occur in a threc-dimeusion.al siun.;atioa at
higher rotation speed. We are expecting that an axisymnmetic simulation more difficulty
should produce velocities with a spectrum with:i a a large band of frequencies than in the
three dimensional case, These simulatioas show that the solution is very sensitive to the
way by which the xinal state is reached. In the case of Fig.3 the exact size of the cell is
difficult to establish because the vortical structures change in time. We could spe-culate
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FIGURE 3. Taylor Couette calculations with 128 x 257 non-uniform grid,; 6 = 0.275,
N = 1.8. The rotation is suddenly increased from 0 to f2 = 3.0.

that 1 < L, < 2. The experiments on the other end seem not to show this dependency on
initial conditions.

For N = 0.4, even when the high rotation is reached throi a several stages an unsteady
flow is produced. The results for N = 0.4 have been furtherniore analysed to see by which
mechanism the passage from L. = 0.5 to L, = 1.0 takes place, a very difficult task in the
laboratory. At Q = 1.8, the contour plots of azimuthal vorticity shown in Fig.4 indicate
that there are cells with L, = 0.5 with thin layers of opposite sign vorticity near the inner
and outer walls. These wall layers, for effect of the still large perturbations at this Reynolds
number loose the symmetry and at their turn break the symmetry of the large vortical
structures at the centre. The symmetry breaking give rise to a sort of merging between
the wall and the vorticity structures at the centre. The larger cell is then again unsteady,
it persists at higher rotation and at n1 = 3.0 a new merging is initiated which will give rise
at a cell of size L, = 2.

I
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4. CONCLUSIONS

In the present paper we performed numerical simulation of the stratified Ta~ylor-Couette
flow experimentally investigated by Boubnov et al.(1993). The numerical method was
tested by evaluating the critical rotation number in the absence of stratification for r =
0.875 p~reviously studied experimentally and numerically. The calculations were then ex-
tended to find the critical rotation number in the presence of axial stratification. In this
case Boubnov et al. (1993) performed the linear stability analysis by finding a linear rela-
tionship between f~ and the stability parameter N, in t~he limit of 6 tending to zero. The

.........

.. . . .... .
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present results lie on a straight line with the slope intermediate between the theoretical
and the experimental one. The independence of the results on the grid size was checked
as well as on the time step.

In the experiment the size of the Taylor vortices were analysed by lookiiug at flow vi-
sualisations. Flow visualisations can be misleading when some sort of unsteadiness. The
size of the vortices could also depend on the way the rotation speed is reached. Thus we
decided to perform simulations reaching a high rotation speed trough a series of stages and
also by assigning the desired rotation at t = 0. Completely different answers were obtained
depending on the stratification. For high N and a step by step increase in rotation the size
of the Taylor cell remained unchanged and is equal to L, = 0.5. In the case of small N
(N = 0.4) on the other hand a step by step increase in rotation gave 0.5 < L, and in the
case of a sudden increase we found, as in the experiment, that the size of the cell reached
the value L, = 2. By looking at the vorticity field we speculated that the formation of
cells with a large size is due to merging of the inner vorticity with the thin layers near the
walls.

ACKNOWLEDGMENTS

The authors wish to thank Prof. Emil Hopfinger who suggested the study of this flow
and for the useful comments on a draft of this manuscript. The fruitful discussions with
Dr. Roberto Verzicco are also acknowledged. The research was supported by a grant from
"Ministero dell' Universiti e della Ricerca Scientifica".

REFERENCES

1. Boubnov, B., Hopfinger, E.J. & Gledzer, E. "Instability and transition in circular Couette flow with

axial stratification "Draft presented in a seminar at the University of Roma. May 1993 see also the

present preprints.

2. Verzicco, FL ; Orlandi, P. " A finite-difference scheme for three-dimensional incompressible flows in

cylindrical coordinates" Submitted to Journal of Comp. Physics 1993.

3. Gorman,M. & Swinney, H.L. " Spatial and temporal characteristics of modulated waves in the circular

Couette system " J.Fluid Mech. 117, 123-142, 1982.

4. Marcus,P.S. " Simulation of Taylor-Couette flow. Part.1 Numerical methods and comparison with

experiment" J.Fluid Mech. 146, 45-64, 1984.

S. Vastano J.A, Moser R.D. " Short-time Lyapunov exponent analysis and the transition to chaos in

Taylor-Couette flow" J.FlWd Mech. 223, 83-118, 1991.

I



A

opinion on this. Should I change the equations by introducirg the mean vertical density
variation? In this case the numerical simulations should be closer to the experiment where
the stratification was obtained by density rather than by temperature.

About correction you corrected Fig.1 putting the linear stability teory line below the
experiments. . was copying this figure from one of your trasparency where the experimen-
tal results of Oc(n)-Oc(O)*eps**(-1/2) lyed below the teoretical results. If I am plotting
Oc(n)*eps**(-1/2) instead Oc(n)-Oc(O)*eps**(-1/2) the experimental results do not coa-
lesce on a single curve. I am litle confused and I need an answer from you or from Boubnov
or Glezer. Could you thank Boubnov too for the further correction.

I am sending through my department only the conference fee I will pay the banquet and
the accomodation deposit in Grenoble, if it is possible.

REgards Paolo
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Abstract

The interaction of streamwise vortices with a density interface is
investigated by the experiments and the computations of the stratified cavity
flow. The flow pattern of the primary circulation is quite different from
that of homogeneous fluid. The results show that the deepening of a mixed
layer into a region of constant density gradient proceeds with three
dimensional deformation of the interface and that the pairs of counter-
roLating streamwise vortices appear in the strong shear layer near the
interface. The comparison between the three-dimensional and two-dimensional
computations indicates that this streamwise vortIcal structure contribute the
mixing across the interface.

1. Introduction

Numerous experiments on the mixing in stratified fluids have been made
to obtain a universal form of the entrainment law. At present, however,
there is no consensus but a wide variety of entrainment laws and the
mechanisms have been proposed. Indeed different investigators in the
experiments using similar apparatuses and ranges for the Richardson number
have reported different entrainment rates. The knowledge of the subject is
summarized by a recent review by Fernando (1991).

The turbulent shear flows near an interface have some common features.
It is well known that when the wind blows over the sea streaks may appear on
the surface. They are caused by Langmuir circulation which is a parallel
system of counter-rotating streamwise vortices beneath a free surface. The
streakin;ss has been also found in wall turbulence, which is attributed to
the presence of streamwise vortices in the inner layer. Although
understanding of the mechanism of their formation has not been satisfactory,
there is enough evidence to support their existence. Since a density
interface has the same effect on the flow as a wall and a free surface by
suppressing the motion to penetrate it, it is expected that in the turbulent
shear flow near the density interface exists such a flow structure of
streamwise vortices, which possibly contributes to the mixing across the
interface.

The aim of the present study is to examine this possibility in both
experiments and cMoUmptations on the str•a•tifi1ead flow in a cavity. The
recirculating flow in a cavity has been one of the targets for validating the
computational methods. Among a lot of studies of the cavity flow Freitas et
al. (1985) have showed in their experiment and computation that the
streamwise vortices appear on the bottom wall and that their presence may
modify the flow structure. The stratified cavity flow can be considered as
one of the simplest models for the mixing by the surface shear flow induced
by wind in the closed region. In this study we will examine the deepening
process of the mixed layer into a region of constant density gradient in a
lid driven cavity and discuss the effect of three-dimensional flow structure
on the mixing.



2. Method

2.1 Experiment

The experiments were carried out using a rectangular Perspex tank with a
length L of 20 cm, a depth D of 20 cm and a lateral span B of 40 cm on the
top of which a belt-drive system was mounted as shown in figure 1. A speed-
variable 6W motor equipped with a reduction gear and a timing-belt and pulley
set drove the 1 mm thick synthetic-resin belt at selected speeds U from 2.0
cm/s to 4.0 cm/s.

The tank was filled with a salt solution such that the density increased
linearly with depth. The initial density profile was measured by traversing
a conductivity probe and the buoyancy frequency was calculated from

N2 = d dp(x 3) (1)
Po dx3

where P (x 3) is the density at a given vertical coordinate x 3, Pc is the
reference density P (0), g is the acceleration due to gravity. The value of N
was varied over 0.2-0.7/s. The narrow gap between the lower surface of the
moving belt and the top of the tank was sealed with a styrene-foam plate to
prevent the salt solution from leaking out.

The experiments were started by turning on the motor. The belt achieved
its selected speed immediately at time t=0, and the depth and characteristics
of the mixed layer were monitored at discrete times thereafter. Since in
running the density interface was usually distorted by the fluid motion, the
depth of the mixed layer was defined as a spanwise-averaged depth of the
lowest level to which the mixed layer penetrated, and it was determined
visually from a shadowgraph as shown in figure 6. The density profiles were
also measured by stopping the belt temporarily to insert a conductivity probe
and transverse it vertically at various times during an experiment.

The fluid motions were visualized by suspending aluminium particles in
the salt water and then slit lighting the tank from the side. Photographs
were taken with a 35mm camera with exposure time of 4 to 6s to obtain well
defined pathlines in the flow field.

2.2 Computation

The Navier-Stokes equations for a heterogeneous fluid with the force of
gravity included can be written as

T. + V. ( uu = -Vp" - p Fr2k + Re-'V 2 u (2)

where k is the unit vector along the x3 axis. u is the flow velocity, P is
the density, p is the pressure, and P" and p" mean the deviations of o and p
from a state of hydrostatic equilibrium. All the variables are made
dimensionless with respect to the reference density Po, the speed U of the
upper wall and the depth D of the cavity, and Re is the Reynolds number UL/v
(tV :the kinematic viscosity ) and Fr is the Froude number U/ g-D. If the
fluid is assumes to be incompressible and diffusive, we have the continuity
equation

V.u = 0 (3)
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and the transport equation for the variation of the density
ap,

+ +V ( )= Rs-'V2 p' (4)

where P'=p-l and Rs=UL/K (K:the diffusivity of salt). The explicit use of
the deviation and the variation of the density is essential to the accurate
computation of such a flow affected by these small quantities.

The solution procedure used here is the finite volume method similar to
the MAC method by Harlow and Welch (1965). The discretization using the
volume fluxes across the faces of the cell, the pressure and the density at
the centre of the cell as primitive variables attains the second-order of
accuracy in space while the time advancement is made by the first-order
accurate Euler explicit method. The simultaneous iterative procedure
proposed by Chorin (1968) is applied to satisfy the continuity equation. In
this procedure instead of solving the Poisson equation the pressure is
determined from the divergence of the velocity vector as the steady solution
of the equation

ap' _ (V. u ())
aat

where i is an artificial variable for the iteration.
No-slip boundary conditions on velocity is imposed at the walls while

no boundary condition on pressure is necessary in the simultan -ous iterative
procedure. In evaluating the diffusion terms for u and P' in the equations
(2) and (4) the gradients of these quantities in the direction normal to the
boundary are assumed to be constant.

The computations were performed in the same way as the experiments. The
upper wall was started impulsively at a constant speed over a linearly
stratified fluid in the cavity with the same geometry. The computations
presented below used the rectangular grid systems with uniform spacing of
1/20 and 1/40, and according to the linear stability restriction, the time
increments were set to be 1/100 and 1/400, respectively. The initial density
difference between the values at the top and at the bottomAP/powas 0.00082
and the Froude number Fr was 0.0143, which corresponded to the experiment at
N=0.2/s, U=2.Ocm/s.

It is difficult to solve the nonlinear flow with very weak diffusivity
because of limited resolution. Since the present computational method does
not include any artificial dissipation, the fluid motions of all the scales
included should be resolved explicitly over the finite grid points to obtain
reasonable solutions. For this reason the Reynolds number and the salt
diffusivity in the computational conditions did not corresponds to those in
the experiments : Re=3000, Rs=3000 or 6000 for the computation while Re=3500-
4000, Rs= 10 * for the experiment.

First the two-dimensional computation was carried out using the finer
grid system to study the formation of the density interface ii, the experiment
and the deepening of the mixed layer. Assuming that the density gradient
increases to a maximum at the density interface, the depth of the mixed layer

was determined from the horizontally averaged field. Next the three-
dimensional computations were conducted to examine the effects of the three-
dimensional motions on the mixing process. The periodic conditions were
assumed in the spanwise direction in some cases. In such cases a random
three-dimensional perturbation of the velocity fields with the magnitude of
3% of U was given to the initial field to cause the flow to be three-
dimensional.
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3. Results

When the upper wall started to move the adjacent fluid dragged by the
wall collided with the downstream vertical wall and penetrated to some finite
depth almost immediately. After this initial stage a primary circulation
formed in the top downstream corner which then grew gradually into the region
of constant density gradient. Figure 2 shows a typical photograph of the
primary circulation in the centre plane. This pattern of the primary
circulation bounded by a stratified fluid beneath as it were a wall is quite
different from that in homogeneous fluid. In the upper layer upstream of the
primary circulation some smaller secondary eddies can be seen as well, but
the fluid motion in the lower layer is not clear in this photograph because
it is much slower. Figure 3 shows a series of density profiles taken at
intervals of half a day which indicates that the total mass has been
conserved during the experiment. The density interface with a considerable
density step has been formed by mixing the upper layer to be uniform. This
process and the density profiles shown on figure 3 are similar to those given
by Linden (1975) in the experiment on the mixing with no mean shear.

Figure 4 shows the time evolution of the primary circulation and the
density field produced by the two-dimensional computation. The flow pattern
of the primary circulation and the secondary eddies with the opposite
rotation shows qualitative agreement with the flow visualization experiment.
The main feature to notice on the contour maps of density is that the primary
circulation raise heavy fluid out of the interface as it penetrates into the
region of the constant density gradient. However, the density gradient of
the lower layer decreases in time and as a result the density step at the
interface is much smaller than expected from the measured density profile as
shown in figure 3. This rapid diffusion of density is due to the extremely
low value of Rs.

The depth of the mixed layer as a function of time is plotted on figure
5(a) for comparison between the two-dimensional computation and the
experiment at the same N and U. The line is the best fit to the experimental
data. The computed data are the depth of the finite grid points at which the
density gradient is maximum, and therefore they are represented by discrete
values. Further there are some points indicating the bottom of the cavity in
the process of the deepening because the density step in the interface is not
large enough to recognize it. Neglecting these points, the result of the
two-dimensional computation shows a much reduced rate of the deepening of the
mixed layer compared with the experimental data.

Figure 6 shows the shadowgraphs of the density interface taken from the
downstream side. The interface is of a wave shape in the spanwise direction,
sharper near the crests and flatter in troughs, the wave length of which
increases as the interface descends. Figure 7 gives the flow structure in
the x, -x- plane across the primary circulation, which displays the presence
of some pairs of counter-rotating vortices in the upper layer near the
interface distorted by them. These streamwise vortices move around, varying
in size and keeping their life for a while. Since they raise the interface
by a few cm and seem to break it at the crests as shown in figure 6, they are
considered to contribute to the mixing across the interface.

To study this vortical structure near the interface and to examine how
much it contributes to the mixing, the three-dimensional computations was
carried out. Figure 5(b) shows the increase in depth of the mixed layer
produced by the computation with the periodic boundary condition being
imposed in the spanwise direction. The same line fitted to the experimental
data as figure 5(a) is plotted for a reference. This shows that the rate of
the deepening in the three-dimensiunal computation is much higher than that
in the two-dimensional computation and closer to the experimental data. The
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flow structure in the x 2 -X3 plane is shown in figure 8. There are many pairs
of counter-rotating streamwise vortices of various scales on the density
interface, among which the large-scale vortices seem to correlate with the
strong distortion of the interface. These results imply that the three-
dimensional structure of streamwise vortices near the interface increases the
rate of the mixing across the interface.

4. Concluding remarks

The deepening of a mixed layer in a stratified cavity flow have been
examined by the experiments and the computations. The results show that the
streamwise vortices exist in the mixed layer near the density interface and
that they contribute to the mixing across the oaterface.

This work was supported by a Grant-in-Aid for Scientific Research and
through grants from the Society of Scientific Research Promotion of Naval
Architecture. I would like to thank K.Takamatsu, S.Hirano, N.Kimura, Y.Ikeda
and K.Maruno for their help in running the experiments and the computations.
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Figure 1. Schematic dinram of lid-driven Figure 2. Visualization of primary circulation at

cavity, the centre plane at N-O2/s, U-2.6cm/s,
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water with the exposure time of 6s.
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Figure 7. Visualization of 3treamwise vortices near a density intedface in the x a -x a plane 4
cm upstream of the downstream wall at N-0.20/s, U=2.6cm/s, t-'47mui, using aluminiium~
particles in salt water with the exposure time of 4s.
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Figure 8. Streaniwise vortices near a density interface in the 3D comnixtation at N-0.2/1s
U=2crals (R&= 6000, coarser grids, with side walls, B-2D) (b) sdrenawise votrticdty contours,
(c) density contours in the x a -x a planes 4cm upstream of the downsum~am wal at
t-8000S.



Characteristics of turbulence by a breaking gravity wave below its critical level

Andreas Ddrnbrack and Thomas Gerz
DLR, Institute of Atmospheric Physics, 82230 Oberpfaffenhofen, Germany

Introduction

The generation of turbulence by overturning internal gravity waves is an important
factor in the microscale dynamics of the atmosphere and ocean. For instance, the
overturning of internal gravity waves and the resulting turbulence are thought to be
the primary cause for clear-air turbulence (Pao and Goldburg, 1969) and the occu-
rence of thin turbulent layers in free atmosphere (Sato and Woodman, 1982; Nastrom
and Eaton, 1993; Sidi, 1993).

One of the fundamental mechanisms leading to the breaking of gravity waves and to
the production of turbulence is the interaction of an internal gravity wave with a critical
level. In a shear flow, a critical level is the height where the phase speed of a wave
equals the mean flow speed (Booker and Bretherton, 1967). As a propagating wave
approaches its critical level, the wave propagation is strongly suppressed: the wave
amplitude decays exponentially in the region above the critical level (the trapping
effect of the critical layer). At the critical level, all momentum of the wave is trans-
ferred into the mean motion. Depending on the excitation energy of the initial wave
field and on shear and stratification of the basic flow, turbulence can be generated.

The gravity wave critical layer interaction is difficult to study observationally in the free
atmosphere because of the broad spectrum of scales which prevent the observation
of isolated events. In the stably stratified boundary layer, the gravity wave critical level
interaction can only be investigated by support of simple models. Nappo (1991) pre-
sented a climatological study of turbulent events over simple and complex terrain in
the nighttime boundary layer. He supposed that the major portion of the frequently
observed sporadic outbreaks of turbulence are caused by wave-turbulence inter-
action near critical levels. Nappo and Chimonas (1992) used a linear wave model to
support this hypothesis and to study the wave exchange between the ground surface
and the critical level. In the laboratory, the interaction can be observed under con-
trolled conditions by defining wavelength and amplitude of the disturbances and by
skilful set-up of the mean flow (Thorpe, 1981; Koop and McGee (1986); Delesi and
Dunkerton, 1989). Hitherto, mainly two-dimensional numerical simulations of the
interaction have been made (Winters and D'Asaro, 1989; Mobbs and Rabbltt, 1992;r'%. -L -4- and " Robins, 190921% F1irst .... ult off thr -"1^^ "" : . ... slim a
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Andreassen (1993) and Ddrnbrack and Schumann (1994) confirm the finding of sta-
bility calculations by Winters and Riley (1992) and Un et al. (1993) that a three-di-
mensional treatment of the problem is necessary.

In this paper, the nonlinear interaction of a vertically propagating Internal gravity wave
with the critical layer and the subsequent generation of turbulence are Investigated
by means of three-dimensional numerical simulations. We consider a constant shear
flow with zero mean over a wavy surface in a stably stratified fluid with constant
Brunt-VAisdiA frequency. The length x, width y, and height z of the domain are
(1.56, 1.56, 1) H, resp ictively. The surface is sinusoidal In x direction with one
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wavelength and amplitude 8 = 0.03 H. At the beglniing (time t= 0), the fluid Is at rest
(see, e.g., Fig. 1). For t>0, the mean flow is towards the left in the !ower half and
towards the right in the upper half of the domain, such that the fluid is at rest at
z = 0.5H. The sinusoidal corruqation excites gravity wav6s with zero phase speed.
Hence, the critical !ayer Is situated at z = 0.5H. The bulk Richardson number RI of the
mean flow just after initialization is one.

Based on the successlul comparison of a two-dimensional version of the model with
the laboratory observations by Thorpe (1981) - presented In Dornbrack and Schu-
mann (1994), we discuss here results of three-dimensional simulations for two dif-
ferent models of viscosity. For a smooth breaking, we use a direct numerical simu-
lation (DNS) with constant viscosity. The flow structure remains essentially two-di-
mensional. The mixing takes place as a process of repeated rolling-up of density
surfaces. The flow shows permanently overturning waves which generate vertical
motions in a quasi periodic manner without real turbulence. In the large-eddy simu-
lation (LES), the Initial field is randomely disturbed and a turbulent viscosity Is used.
The turbulent viscosity is assumed to be proportional to the fluctuation of the local
shear and is a function, of the Richardson number. The breakdown of the convectively
unstable regions occurs immediately after the appearance of Instability and three-di-
mensional small-scale turbulence is generated. The mixing produced by the LES Is
much more efficient than the two-dimensional counterpart in the DNS.

The governing equations and the numerical model, including initial and boundary
conditions, are described in detail in D6rnbr.ck and Schumann (1994). Here, we
restrict ourselves to the discussion of the simulation results.

Results and Discussion

Fig. 1 and Fig. 2 depict the flow evolution by means of contour plots of the temper-
ature field for DNS and for LES, respectively. The amplitude of the excited w;'mas
increases with height (up to nearly 38) but falls to zero just below the critical level.
No wavy motion is found above this level which acts as an absorber whereby
momentum is transfered to the mean flow causing an advection in the positive x-di-
rection. This process gradually transports colder fluid over warmer fluid, leading to
regions of reduced temperature gradients (characterized by thickening of the marked
areas). The local Richardson number drops and the regions, which are mostly found
above the trough, become convectively unstable. Between these sites of instability
the gradient Is enhanced (characterized by thin marked areas). The resulting struc-
ture is aiso reported from observations of Keivin-Heimholtz instability.

The first overturning occurs at about t= 14t(,f, where t~f= H/AU (AU is the velocity
difference between top and bottom). Only for times larger than 18k, the wave
structure evolves significantly different in DNS and LES. The uniform viscosity case
shows a smoothly breaking regime, which consists of the repeated rolling-up of con-
tour lines, whereas the turbulent viscosity case leads to a fully turbulent mixed layer
below the critical level.

In the DNS, we see no indication of the onset of secondary, smaller-scale Instabilities,
neither in the statically unstable cores, nor in the braids, where a shear-driven insta-
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Figure 1. Temporal evolution of the flow structure at high viscosity (DNS). Shown are
contour lines at the temperature W~ + 8(z).
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bility could be possible. In fact, at t= 36tj, we do observe small-scale disturbances
in the braids over the crest. However, these disturbances are damped due to vis-
cosity and no further growth can be observed. In the DNS, the main characteristic is
the continuous generation of overturning waves induced by shear and primary waves.
After the overturn of the first wave between t= 30 and 36to, we find a second
unstable region which itself creates a smaller wave with growing amplitude.

In contrast to the DNS, we see in the LES that, when t< 18t41 , the overturning wave
breaks Immediately causing a strong turbulent mixing in the unstable regions. As in
the DNS, we observe a tendency to build up a secondary wave structure at the same
time and position. But this structure is destroyed quickly by the mixing. At the end
of simulation we find large areas of reduced density gradients but only small portions
of the fluid are convectively unstably stratified.

0.6 0.6 0.6 ,
1/H 11/H

.. .0.5 0.5 ... ......

0.4 0.4 0.4

0.3 L 0.3 o0.3E)' Ri

0.2 0.2 0.2 ...
-0.3 -0.2 -0.1 0.0 0.1 0.2 -0.3 -0.2 -0.1 0.0 0.1 0.2 -2 0 2 4 6 8 10 12 14.

Figure 3. Typical vertical profiles of mean quantities. Horizontally averaged profiles of
the mean velocity U, the temperature 0 and the Richardson number Ri at
beginning of the simulations (solid line) and during the breaking (dashed line).
Velocity and temperature are normalized by the corresponding reference values.

Fig 3. shows the horizontally averaged profiles of the mean velocity, the temperature
and Richardson number at the beginning of the simulations and during the breaking
at t= 40ta for the DNS. Below the critical level the mean velocity increases in time.
While the increase up to about t= 20tl, is similar in the DNS and the LES, the final
speed up at t- 40%, is 0.01 1U in the DNS and just 0.O07AU in the LES. The layer
directly influenced by the momentum transfer between the wave and the mean flow
has a thickness of about H/4. Just below the critical level the Richardson number is
much larger compared to the initial value due to the decreasing shear and the
increasing stratification at this altitude. Below this stably stratified layer, the shear Is
large and the Richardson number drops below the critical value and becomes even
negative indicating a layer with small or negative temperature gradients.

Which instability - convective or Kelvin-Helmholtz type - is responsible for the
breaking event? Assuming that Ric 0.25 Is a necessary condition for the onset of the
breaking process, we realize with Fig. 4 that regions with Ri< 0.25 are also regions
of weak lateral vorticity (hence, weak shear). Therefore, also the local temperature
gradient must drop In order to bring Ri below 0.25. This suggests that the breaking

I
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process is mainly caused by the wave-induced convective instability and not by a
mainly shear-driven Kelvin-Helmholtz instability.

(a) (b)

S0.1

Figure 4. Vertical cross-section of the vorticity o), (a) and the Richardson number Ri (b)
at t= 60t (DNS). In (b), the dashed line is Ri=0.25, the solid lInes denote neg-
ative values. Same scale as in Fig. 1.
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Figures 5. Profiles of the momentum flux u'w'. (a) DNS and (b) LES. The times are:
t-•04 ; t=6., 6.; - ; t-- 12- :__ __ _ t.24 .- . ; ;

One of the most Important features of the absorption of a wave at the critical level is
the acceleration of the mean flow. This acceleration requires a vertical gradient of the
shear stress, because &dat- - a--w/az. Idealized waves with infinite extent have an
uniform momentum flux and the gradient Is zero, i.e. on average the fluid is never
forced. In our simulations, the profiles of L-W manifest a strong vertical structure (Fig.
5). Initially, the vertical flux of horizontal momentum is constant (zero for the dis-
turbed, slightly negative for the uniform viscosity case). At tu 6t,, the uaW-profile
exhibits vertically a wavelike structure. Its amplitude increases with altitude but
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strongly decreases to the initial value just below the critical level. Between i a- 0.3H
and l =_ 0.5H the gradient is negative and large and causes the strong acceleration
of the mean flow. Due to the wavelike structure of the profiles, other layers exist
below this region with an accelerated or decelerated motion. At t> 12tol, the number
of waves is Increased and at t> 24tk, the shear stress is nearly uniform below the
critical level. After the breaking event, the shear stress is heavily reduced and
becomes negative in the formerly forced region. The reduction is much stronger in
the LES than in the DNS. This means, the turbulent mixing (which now actually
includes the third dimension) in the LES is much more efficient than the more or less
two-dimensional regime of the DNS.

t = 6tf t = 24tf

t = 18tf t 6tf

Figure 6. Vertical cross-section of the (u,w)-vectors at different times (DNS). The mean
profile U(z) is subtracted from the local velocity field. Plotted are vectors of a
magnitude from 0.05 to 0.2 U,,, Same scale as in Fig. 1.

Fig. 6 shows the vector plots of the pertubation velocity field in a xz-plane at four
different moments for the DNS. The direction of the vector arrows above the surface
is upwards in the positive x-direction. Therefore, the vertically propagating wave
carries small packets of positive momentum towards the critical level (t= 6t,). At the
critical level the momentum is transferred to the mean flow causing Its acceleration.
The interaction between the fixed surface wave and the critical level (U=0) can be
denoted as a kind of resonance. The critical level experiences a long lasting excita-
tion due to the continious momentum deposition at just the position where the wave

I
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encounters the critical level (t = 244f, and t= 36tr). At other levels the mean flow U(z)
of the fluid prevents such an excitation.

We conclude that the differences in the flow evolutions due to different simulation
techniques, namely DNS and LES, correspond to physical breaking events observa-
ble in a rather viscous fluid (as DNS) and in a fluid with small effective viscosity (as
LES).
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ABSTRACT

Numerical simulations of unsteady, two-layer flows past an isolated two-dimensiornpi ob-

stacle are compared with laboratory measurements. Two numerical models are considered:

a streaanfunction-vorticity formulation valid for a Boussinesq fluid, and the SOLA-VOF

coding for the primitive equations. A detailed model-data comparison of the interface po-

sition and drag force over a wide Froude number raage is discussed. Inviscid runs with the

streamfunction-vorticity model accurately simulate the upstrean' propagating disturbances

and reproduce the interface displacement in the vicinity of the obstacle. Model drag forces

from a Bernoulli calculation agree with experimental forces over part of the Froude number

range considered. However, at higher Froude numbers the obstacle drag is underestimated

by the model due to neglect of viscous effects. Simulations with SOLA-VOF are generally

less accurate than with the vorticity-streaanfunction model.
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ABSTRACT

We have studied the effects of the Richardson and Schmidt numbers on the mixing
efficiency of decaying grid turbulence in a stratified fluid. A scaling analysis was used to
predict how the efficiency should vary with the grid Richardson number Rio, and towed grid
experiments were performed to verify some of the predictions. Experiments with salt and heat
show that the Schmidt number has little effect on the efficiency over the range of Ri0
considered, a result that can be explained by comparing mixing and decay time scales.

1. INTRODUCTION

One of the fundamental problems in the study of mixing in stratified fluids is to
determine the mixing efficiency, or the fraction of the work done on the fluid that appears as a
change in potential energy. Different forms of the efficiency are used, but we adopt a flux
Richardson number based on the mean potential energy change APE during a turbulent event
and the total work W done on the fluid to create the event:

R APERf W (1.1)

Since dimensional analysis and simple physical arguments suggest that the efficiency can vary
with the stability of the flow and possibly the stratifying agent, we review some of the previous
studies of these effects and extend them with scaling and experiments.

Several studies have focused on the effects of stratification on the efficiency of
turbulence generated by a grid towed horizontally through a linearly-stratified fluid. For weak
stratifications, entrainment arguments (Linden 1979) and a gradient-transport analogy (Britter
1985) both yield

Rf cc Ri 0 (1.2)

where the grid Richardson number Rio = (NM/U)2, N is the initial buoyancy frequency, M is
the grid mesh, and U is the grid speed. For stronger stratifications, Britter (1985) used results
from a Lagrangian dispersion analysis and experiments to predict that

Rf * Ri110 (1.3)

Data for 0.01 < Rio < 0.8 (Britter 1985, Rottman & Britter 1986) fit this relationship
reasonably well, but the exponent of a power law fit to data for 3 x 10-3 < Rio < 8 x 10-3
(Barrett and Van Atta 1991) falls between 0.5 and 1. The behavior for stronger stratifications is
even less certain- Linden (1979, 1980) believes that since buoyancy forces will suppress the
turbulence, the efficiency should decrease to zero, while Rottman & Britter (1986) propose Rf
should approach a constant.

Since all of the previous grid towing experiments used salt to establish the stratification,
less is known about the effect of the molecular diffusivity D of the stratifying agent. Oscillating
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grid experiments with a two-layer system (Turner 1968) showed that the entrainment rate for
turbulence in heated water exceeds that for turbulence in salt water, but an argument based on
the range of scales contributing to mixing suggests that Sc should have no effect when Sc > I
(Ivey and Imberger 1991). In fact, mixing efficiencies based on rates of change of potential
energy and work input are independent of the Schmidt number for all but the strongest
stratifications (Ivey et al. 1994).

To unify previous predictions and explore the effects of strong stratification on mixing
efficiency, we developed a scaling analysis that predicts four regimes of Rf-Rio behavior, and
to study effects of the Schmidt number, we compared time scales of mixing and decay. We
performed towed grid experiments in heat-stratified and salt-stratified water to check the
analyses.

II. THEORY

A. Scaling: relationship between Rf and Rio

To derive relationships between Rf and Rio, we relate the mean potential energy change
to the vertical mass flux p'U' 3 through the equation for the mean density and obtain an
expression for Rf in terms of a vertical overturn scale and a decay time for the turbulence. We
then examine four regimes of turbulence behavior to estimate the overturn scale and decay time.

1. General expression and scaling for the flux Richardson number

Computing the flux Richardson number from (1.1) requires estimates for the potential
energy change and the work done by the grid. The change in mean potential energy,

APE = gJx 3 ApdV
V (2.1)

where Ap is the change in mean density, x3 is the vertical coordinate, and V is the volume of the
fluid, can be computed by multiplying both sides of the mean density equation by gx3 and
integrating over both the fluid volume and the duration of the mixing event. For turbulence
generated by a gri' towed in a rectangular tank with length L, width B, and depth H, we neglect
mean flow and vaifations in horizontal directions and obtain

APE =gL7 ~u.3 d 3+ D~p 0Ot) - plt))+ HD -- 'Pdt

°l x,=HJ (2.2)

The teims represent potential energy changes due to turbulence, diffusion of the density profile,
a~nd o..-l-osses%"'hesu e~ac,-ect&Vc'iy. Iif losses are negligible and the Peclet number UMID
is large then

-H
APE gLBfjp-u3dx 3 d:

o o (2.3)

Rottnan and Britter (1986) used a similar expression to compute Rf from flux measurements.
We approximate the integrals in (2.3) by simply multiplying an estimate for the vertical

mass flux by the depth and a time for decay of the turbulence TD. The mass flux can be
replaced with a restatement of the definition of the vertical flux correlation coefficient

:t
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P'U'3  = Rpw'Pj 3  (2.4)

where the tildes denote RMS values. If the horizontal length scale scales with the grid mesh

and horizontal components of the turbulent velocity scale with the grid speed, continuity yields

3 M (2.5)

where h is a venical overturning scale. For all but very strong stratifications the RMS density
fluctuation should scale as the product of the mean density gradient and the vertical overturn
scale

P (_ dp hP 0 2
dx 3  g (2.6)

where po is the mid-depth density. Then, since the work done by the grid can be found by

multiplying the drag force FD by the length of the tow L,

WL = 1CDP0U 2 BHL(
DP (2.7)

(where CD is the grid's drag coefficient), we use (2.3) through (2.7) in (1.1) and ignore
constants to obtain

Rf , RPW(-)NTDRi0 (2.8)

To relate the mixing efficiency to the grid Richardson number with (2.8), we must
estimate the decay time TD and the vertical overturn scale h. In the next section, we classify the
behavior of the turbulence based on the stratification strength--or grid Richardson number,
estimate the decay irne and vertical overturn scale to compute the mixing efficiency from (2.8),
and determine the values of Rio for which the behavior should change.

2. Regimes

a. Regime I: Weak stratification

If there is no stratification, there is nothing to mix, and the efficiency must be zero. If
the stratification is weak, the turbulence should be nearly isotropic and relatively unaffected by
buoyancy. Thus, we assume that the vertical and horizontal scales of the eddies are equal (h -
M), that the decay time scales as the eddy turnover time (TD - M/U), and that the correlation
coefficient is constant. Substituting these estimates in (2.8) yields

cRi0 (2.9)

which agrees with (1.2).



b. Regime II: Significant stratification

For cases with stronger stratification, we assume the turbulence is still nearly isotropic
but account for buoyancy effects on the decay. Previous stratified turbulence experiments (for
example, Barrett and Van Atta 1991) have shown that the decay time TD is approximately 7t/N.
Since buoyancy may also affect the correlation coefficient, we retain it and obtain

R Cc .pi1/2
R R 1/2~0 (2.10)

If the correlation coefficient is independent of stratification, then Britter's result (1.3) is
recovered.

We can determine when this regime begins by finding the value of UtIM in an
unstratified turbulence experiment (Comte-Bellot and Corrsin 1966) for which the same amount
of decay (which we take to be the value of the streamwise turbulence intensity) has occurred as
in the stratified turbulence experiments at t = n/N. This process suggests the transition between
regimes I and II should occur when Rio = 4 x 10-3.

c. Regime III: Strong stratification

When the stratification is so strong that vertical overturns are inhibited, the largest
overturn scale h is the Ozmidov scale Lo = (r/N3) lf. Assuming an inertial estimate for
dissipatione - U3/M still holds--at least near the grid--and keeping the decay time estimate TD -
N-1 , we find

H IV

Weak Significant Strong Waves

stratification stratification I stratification onlyR/I I
112

R Rio IR R Ri 1 RB R R I R 0
II

0 4x 10 3  
Re

Ri 0

Figure I. Schematic of the variation of the mixing efficiency with grid fichardson number
and transitions between the regimes as predicted by the scaling analysis. The
regime III behavior and highRio boundary are based on an inertial estimate for
dissipation. The scaling does not predict the magnitude of the efficiency.
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Rf RPWRio (2.11)

If the dissipation does not depend on the grid mesh (that is, e - ON) then the exponent
changes from -1 to -1/2. In either case, the scaling supports linden's (1979, 1980) idea that
thlý efficiency reaches a peak and decreases. Without detailed measurements in strongly
stratified flows, we can say only that the peak should occur when Rio = 0(1).

d. Regime IV: Waves only

When the stratification is so strong that the grid generates only waves, no mixing
occurs, and the efficiency is zero. This regime should begin when no scales are turbulent, or
when the Ozmidov and Kolmogorov scales are equal (see, for example, Gibson 1980)--that is,
Rio = O(Re).

B. Time scale analysis

Although the scaling analysis in section ILA predicts the effect of stratification on the
mixing efficiency, it does not give information en the effect of the Schmidt number. To
investigate Schmidt number effects, we compare time scales of mixing and decay to detemdne
whether mixing cmi occur before the turbulence decays. If the ratio J of the mixing time to the
decay time is small, mixing occurs before the turbulence decays, and if J is large, the turbulence
decays before mixing can occur. We consider only the Sc > 1 case here, although we have also
analyzed the Sc < 1 rase.

We model the mixing as a combination of two processes: stirring the scalar from the
large scales to the small and diffusing the scalar across the small scales. For Sc > 1, the stirring
also consists of two steps: stirring from the large scale L, to the Kolmogorov scale via the
energy cascade and stirring from the Kolmogorov scale to the Batchelor scale LB via small-scale
straining. Estimates of the two stirring times from Broadwell and Breidenthal (1982) and
Batchelor (1959), respectively, give a total stirring time

= -Re- 1/2 ) + C 2_Re-1 1 21og Sc
= "2 (2.12)

where Re = ZjL,/v and the ci's are constants. Combining (2.12) with the standard diffusion
estimate TMD - LB 2/D gives the total mixing time. For moderate stratifications (Ri = (NL,/g) 2

< 1), the ratio of the mixing time to the decay time (TD - N-1) is

j = TS + TMD = Ri 1 2[A, + Re-I/2(A 2 + A3 gSc)]
"TD (2.13)

where the Ai's are constants that can be found from data of previous experiments.
In this form, (2..3) cannot predict the mixing efficiency, but it does show how the

Schmidt number--as well as the Reynolds and Richardson numbers--might affect the mixing.
Since J depends on the logarithm of Sc, differences in mixing of heat-stratified water and salt-
stratified water should be small for moderate stratifications. For stronger stratifications, when
the largest overturning scale is the Ozmidov scale, a similar analysis shows that Schmidt
number effects may become important when &vN2 is small; results from numerical simulations
(Ivey er al. 1994) support this prediction.
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III. EXPERIMENTS

A. Procedures and equipment

To perform the experiments, a 4-m long, 0.8-m wide tank is filled to a depth of 0.35 m
and stratified with linear distributions of either salt or heat. Initial density profiles are measured
with a Precision Measurements Engineering model 125 temperature-conductivity probe. A
wooden biplane grid with rectangular bars, 5-cm mesh, and 36% solidity is towed through the
water at speeds between 4 and 20 cm/s to create turbulence, and the drag force on the grid is
measured with a Western Load Cell force transducer and integrated over the tow length to
obtain the work done on the water. After about five minutes, when the motions in the tank have
decayed, the grid is towed again. After a set of four or eight tows, the fluid is allowed to settle
for an additional twenty minutes before density profiles are measured at several locations along
the centerline of the tank. The flux Richardson number is taken as the slope of the least-squares
line fit to the potential energy change after n tows

L0
(APE)n gBf x3 (Pn- 0 )dx 3dx(

o-H (3.1)

(where p, is the density profile after n tows) plotted against the total work done on the fluid.
The major uncertainty is due to heat losses. Losses are reduced by insulating the tank

sides and bottom with 7.5-cm thick Styrofoam and heating and insulating the Plexiglas
enclosure above the water surface. With these precautions, the ratio of the mass change in a
profile to its initial value is less than 10-3. Since we use (3.1) to calculate the potential energy
change, any heat loss tends to decrease APE. Estimates based on (2.2) suggest that this error
can be from 1 to 20%.

B. Results

The results of our experiments resemble those from other experiments in several ways
(figure 2). Most of the work done by the grid (more than 96%) is dissipated, and if the scaling
analysis is correct and the efficiency decreases for higher Rio, then an efficiency of about 4%
should be the maximum. Also, density profiles evolve as in other experiments: Turbulence
causes a flux along the gradient, and near the top and bottom of the profiles, where the fluxes
must vanish (at least approximately), mixed layers form. Additional tows cause the mixed
layers to entrain fluid and erode the gradient zone.

Although the trends of the data from different experiments agree, the values can differ
by as much as a factor of three. Reasons for this discrepancy include differences in grid
geometry, drag coefficient estimates, and methods for computing the flux Richardson number.
However, since the profile evolution depends on dte boundary conditions, the most likely
explanation is that the efficiency depends on the depth, or the length scale ratio HIM, which
probably sets the mixed layer size. In fact, simply plotting the data against Rig, = (NH/U)2

collapses data from the different experiments to within 20% over most of the range. To
suppress effects of HIM, we have used the same depth for every run shown in figure 2.

The data give some support to the scaling analysis. Power laws fit to our salt water
data, heated water data, and data from Britter (1985) and Rottman & Britter (1986) for
5 x 10-3 < Rio < 1 give exponents between 0.5 and 0.6. As long as the vertical flux correlation
coefficient depends only weakly on the grid Richardson number, these results agree with the
regime II scaling (equation 2.10). The high-Rio boundary of regime II may be correct since the
data for Rio > 1 suggest that the efficiency has reached a peak; however, more data are needed
to investigate both the high and low Rio behavior more thoroughly.
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Figure 2. Effects of stratification and Schmidt number on the mixing efficiency.
+ Present data--salt water, * Present data--heated water, o Britter (1985),
x Rottman & Briutter (1986), + Barrett & Van Atta (1991).

For the range of grid Richardson numbers we have used, the effect of the Schmidt
number is negligible--within the accuracy of our experiments.. The efficiencies for heated water
are up to 10% lower than those for salt water, but as we mentioned in section III.A, heat losses
can reduce the potential energy change andRf by up to 20%. Thus, the measurements agree
with the suggestion of the time scale analysis that Schmidt number effects are small when Sc >1.

IV. SUMMARY AND FUTURE WORK

We have examined effects of stratification and diffusivity of the stratifying agent on the
mixing efficiency of decaying grid turbulence. We related the efficiency to the grid Richardson
number by computing the potential energy change from the mean density equation and
L"'- " ... , .... me" an veIUal L........UVC ..LUL .. t..1. LjDa from oLUWeU grid eGperiAMents
suggest that thte predictions for cases with significant stratifications (regime HI) are
approximately correct. The experiments also confirm the idea from a time scale analysis that
effects of the Schmidt number are small when Sc > 1.

Future work includes investigating the behavior at higher and lower Rio, determining
the dependence of the vertical flux correlation coefficient on Rio, and developing analytical
work--including the time scale analysis and a linear theory--to predict the efficiency for the
regimes not accessible with experiments. Once the simple case of grid turbulence is
understood, the efficiency of phenomena more relevant to ocean mixing, such as breaking
internal waves, can be studied.
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STRATIFIED FLOWS IN URBAN SCALE ATMOSPHERE
SANDRINE ANQUETIN, CLAUDE GUILBA.UD, JEAN-PIERRE CHOLLET

L.E.G.I., UJF-INPG-CNRS, GRENOBLE, FRANCE

Abstract. Urban air pollution problems may be analysed with a pronostic model, which
is able to describe the evolution of the urban boundary layer, coupled with a dispersion model
for chemically reacting pollutants, which takes into account all significant reactions. A code
is developed on the basis of ARPS (University of Oklahoma), a 3D, nonhydrostatic model
where fully compressible equations are solved with time-splitting procedure. The set of time
dependent equations is dicretized in a general coordinate system, allowing a fine description
of the terrain. Subgrid phenomena are parametrized with a subgrid-scale mixing coefficient for
momentum and scalars from a Smagorinasky-Lilly closure scheme..

Test cases are carried out in order to analyse phenonwnology and provide validation for
constitutive elements of the model a3 regard dynamics evolution. Isolated hills are classicaly
used to test the representation of a complex terrain as well as the production of large eddy
recirculations and the production of orography induced wave. Various cases of stratification
are considered and comptwed against known solutions.

Then, an idealized valley is simulated to highlight geographical effects on the local winds.

1. INTRODUCTION. The specific attention to the urban air quality is
due to increasing photochemistry events especially in cities located in deep val-
leys. Among the various pollution sources, road traffic is usually the predominant
one, associated with disadvantageous topographical and climatological charac-
teristics of the city. The dynamics of the atmosphere above such sites is mainly
governed by local thermal conditions with weak synoptic influence, and wind di-
rection determined by the valley configuration. Pollution problems are mostly
associated to low wind conditions, with significant stratification including often
an inversion layer. Pollutants emitted into this inversion layer can build to high
concentrations because of the trapping between the valley slopes, and can be
harmful for people, animals, and plant life.

Because of the large structural, temporal, and spatial variability of the ur-
ban lower atmosphere, it appears that measurements will not suffice to assess
and to predict the flow structure, the dispersion processes, and the air quality or
pollutant contents, and their impact. The improvement of the knowledge of the
combined physics and photo-chemistry of the urban atmosphere calls for the de-
velopment of a new generation of numerical simulation codes taking into account
natural complex terrain, modelized heterogeneous urban canopy, parametrized
eddy mixing at subgrid scales and urban characteristic chemistry. The develop-
ment of sub-mesa scale models (i.e. scales up to 20 kin, where the atmospheric
flow is strongly influenced by the orography and the ground characterization)
will allow to study the interactions of the city fabrics and urban sources of heat
and pollutants, with the surrounding orography. This is a special importance for
the cities located in valleys where the urban radiative budget interacts with the
along-valley and katabatic cross-valley winds.
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Such code is under development within a national collaborating project, on
the basis of ARPS (Advanced Regional Prediction System, University of Ok-
lahoma), a 3D, non hydrostatic model where fully compressible equations are
solved with time splitting procedure. Although our code (ARPS-SM) is devoted
to the simulation of the atmospherical dynamics within complex orography, a
first step is dedicated to its validation on more simplified flows with well marked
effects of buoyancy anid where the geographical effects govern the local dynamic.

The flow over an isolated hill is the simpliest and the most studied atmo-
spherical test case in which the buoyancy forces play a major role. The aim of this
study is to analyse the gravity waves due to the displacement of air parcels above
hill within a stably stratified atmosphere. These so-called mountain lee-waves
have been observed in mountaineous regions all over the world and predicted
by numerous codes (for example [4] and [11] ). For various cases of stratification
(characterized by the atmospherical Froude number) the predicted response of the
atmosphere can be compared to both analytical solutions or previous numerical
results, in order to validate the ARPS-SM code.

Beside this validation aspect, first results of simulation within a stylized
valley hightlight the geographical effect on the development of local winds, and
the trapping effect due to a specific atmospherical situation chaxacterized by an
inversion layer. This last configuration tends to represent the Is~re valley located
on the North-East part of Grenoble. As all deep valleys, the dynamnics of the
atmsophere is strongly influenced by the diurnal and complex evolution of the
stratification.

2. THE SET OF EQUATIONS. At the sub-meso scales, the dynamic
fields keep up with a mean anelastic continuity equation (O(pUi)/Ozi = 0.). The
density fluctuations act with a very small time constant to bring back the flow
to a non divergent state. Therefore, the least accurate set of equations is the
Boussinesq system, which will be a poor approximation unless the vertical scale is
less than the density scale height. The Boussinesq system was probably the most
used for atmospheric applications. But now with the new numerical developments
and the new scales of interest, it is thus necessary to go further than the classical
Boussinesq hypothesis to take into account of a more complete thermodynamic
in order to simulate flows at sub-meso scales where the local density variations
can be of the order of magnitude of the -v-iations of the niean gradu'et.

The type of numerical solver is then dependent on the type of the physical
restrained hypothesis. As we mentionned above the effect of acoustic waves is not
relevant at our studied scales. Historically, nonhydrostatic model using anelastic
equations [7] where sound waves are filtered out, were first put into practical
use. In the late 1970s, along with the advancement of computer science and
techniques of numerical computation, nonhydrostatic models using compressible
equations where sound waves were not filtered out were developed and put into
practical use. Tauguay et al. [12] treated the terms relaced to sound waves semi-
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implicitly in both the horizontal and vertical direction, whereas Klemp et al. [5]
used a so-called "time splitting" technique in which the sound waves are explicitly
time integrated. The interest of this last approach is the explicit formulation of
the pressure which avoids the inversion of a complex matrix at each time step.
Moreover, this technique is easier to be implemented on the parallel or vector
computers.

2.1. The governing equations. The 3D non hydrostatic governing equa-
tions of ARPS-SM include the prognostic equations for momentum, pressure,
potential temperature and the equation of state.

A base state (P., E)., p,) is defined to be horizontally homogeneous, hydro-
static and time invariant.

('(1, P , z, t) = AP(x, y,z,) + P(z)
o(zx, y, z, t) = Ao(r, y, z, t) + 0.(9()

with 8P,/Oz = -pg and P. = p, R', () P. in this paper, Ui stands
for the 3 components of the velocity, e is the potential temperature, P is the
total pressure whereas AP is the perturbation pressure, p stands for the fluid
density, c is the sound velocity, L is the kinematic viscosity, B and Cp are the
universal gas constant and the specific heat at constant pressure. fi represents the t
Coriolis contribution terms within the momentum equations, whereas DA stands
for the buoyancy force. The source/sink term S9 represents the contribution from
radiation and any other heating/cooling process.

The (,) variable denotes the large scale field of the variable 4 after the filter-
ing operation using A as the characteristic length of the filter ( A = (A=4A• )1/3).

The subgrid-scale field is noted 0. The variable 4D is thus substituted by D =
(0) - € and the equations are written as :

(2) -- Ii- + Uvj -o•) = (P) + (Be) + (fi) +
at O~j (p) Oxi

a (V 22± ý )- UiUkI)
OXM\ Dxk Ua- ) (

D(Ap) a(P) a 0(a) a (uj)
(3) + (Uv) - = (p) c2 -oay OiN at 0x}

(4) a-0 + (Uj) Ž12Ž = 0- (- (ujo)) + (SO)

(5) (P) (p) R (kE ) 2 :-Ic,

3

-- CI



Since the pressure is directly responsible for the mass balance in the system
through the pressure gradient forces in the momentum equations (2), it should
be accurately predicted. For this reason, the pressure is chosen over density as
the prognostic variable and diagnose density from temperature and pressure (eq.
5). The pressure equation (3) is obtained by taking the material derivative of
the equation of state and replacing the time derivative of density by velocity
divergence using the mass continuity equation.

The determination of the subgrid scale turbulent fluxes (momentum (ujuj)
and heat (uiO) ) is based on the eddy viscosity concept calculated with the clas-
sical Smagorinsky/Lilly expression [9].

S[o(u,> ±a(uJ)" and
(iu,,) = 2 ,.6,• - v, LL + -I2 and (uO) = -Kt

31xjaxi ' Oxi

where :
* the subgrid-scale kinetic energy is defined with:

kg = 2 (o.43A)' a-2 •7 + LL 2

\U( O xi & /)
* the subgrid-scale eddy viscosity is parametrized as

,Vj (0-1A)2max/w +L21 P rt

* the subgrid-scale eddy diffusivity is given by : Eit = vYPrt.

N and Prt stand for the Brunt Viis5li frequency and the turbulent Prandtl
number respectively.

2.2. The numerical method. The governing equations are written in a
curvilinear coordinate system (C, q, () that is orthogonal in the horizontal plane.
The spatial discretization uses a second-order quadratically conservative spatial
differences on the Arakawa C-grid [1]. The time integration is totally explicit
in time and is made by means of the so-called "time splitting" t.-cbnique [5].
The equations are, therefore, split into sound-wave and gravity-wave components
with sound wave components being time-integrated with a small time step, and
remaining terms being evaluated with a large time step. The temporal discretiza-
tion is carried out by the second-order leapfrog scheme with Asselin time filter
[2] at each iteration on the big time step.

2.2.1. Boundary conditions. The ground is the only boundary associated
with the mountain wave problem. We require the normal velocity to vanish at
the surface.

The radiation boundary condition, which requires that all energy transport
be directed out of the domain, is approximated at the upper boundary through the
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Rayleigh damping. In the absorbing layer (z6 < z < zt), only the perturbations
of a variable from its upstream value are damnped. The damping terms, which
are added to the right-hand side of equations (2 and 4), are :

W4=r(z)(O-•)with r(z)=a -cos Z
17 Zt - ZbJ

The finite difference formulation requires lateral boundary conditions in which
the inflow/outflow must be correctly parametrized. The lateral boundary condi-
tions are similar to the wave permeable boundary conditions proposed by Orlan-
ski [8]. The formulation of the phase velocity is based on the work published by
Thompson [13].

2.2.2. Initial conditions. At the initial time, t=0., all the prognostic vari-
ables are initialized to the those defining the base state atmosphere.

3. DEVELOPMENT OF MOUNTAIN LEE WAVES. This part con-
cerns the analysis of the different thresholds of mountain lee wave appearance over
a 2D hill obtained with 3D simulations. The obstacle is defined by:

hh (x) = h xZ
1 + (xL) 2

where h is the mountain height and L is the mountain half width at half-
height. The atmospheric flow U at the inlet is uniform with height, and we
consider the Brunt-ViisiLli frequency N constant in the vertical section. At the
scales of interest (U = 5 m/s, L = 2 kin), the Rossby number (R1 = U/fL) is
much greater than unity, therefore the Coriolis force within eq(2) is neglected.

The 2D test case is probably the most studied but not as clearly resolved.
When we want to evaluate the atmospheric model performances, it is natural to
choose a configuration for which linear and non linear analytical solutions have
been obtained. We can thus validate our arbitrary decisions such as the numerical
method, the initialization, the boundary conditions ...

The nondimensional height or Froude Number F = Nh/U acts only as
an amplitude factor in the linear theory [10] developed for not elevated relief
(Nh/U << 1), whereas the nondimensional width NL/U gives the structure of
the flow. For small value of this number, no energy is transferred in the vertical,
the vertical perturbation is thus absorbed. For value around unity, non hydro-
static effects are well marked, the energy is propagated downhill and vertically.
For higher value of NL/U, the energy is propagated straight up. We chose to val-
idate the code on this last configuration described by an analytical expression. In
fig. 1, the iso-E) obtained from the analytical solution (a) and from the simulation
(b) are compared. The height h is chosen in order to be within the scope of the
hydrostatic hypothesis (i.e. F << 1, F = 0.5 ). The wave structure (wavelength
and phase) is correctly predicted with a slight underestimation of the wave am-
pli~ude. The magnitude of the vertical velocity is higher in the simulation, which
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tends to amplify the velocity close to the ground. The results obtained by Stein
[111 with the hydrostatic model PERIDOT show the same tendency.

The Long model [6] takes into account the non linear effects, and car. thus
predict the destabilization of the vertical potential temperature profile due to
higher obstacle. The non linearities are directly responsible of the iso-E bending
which can produce the destabilization of the initially stable vei cical profile. The
Froude number F = Nh/U gives, in this case, the structure of the flow. This
theory is valid for 2D flow, and uniform U and N profiles. The critical Froude
number is determined as the wave breaking threshold, and found equal to 0.85
for a 2D bell mountain. This threshold has to be compared to the unity value
predicted with the linear theory. Thus, the nun linearities tend to break the wave
for lower obstacle than the linear theory. For F > Fcrit, the flow is subjected
to important modifications. in fig. 2, we present the calculated longitudinal
component of the wind and the iso-0 for F = 1.4. We observe a strong increase of
the wind close to the ground and, the creation and then the downhill propagation
of a "hydraulic jump" predicted by the Long's theory. These modifications could
be responsible of the storms (after [3]) such as the one in Boulder in 1972, with
intense winds near the ground, and developed turbulence in altitude close to the
wave breaking regions. For even higber hill (Fig. 3, results of the simulation
for F = 2.0), the flux deceleration is more and more marked. The flux is then
stopped onto the obstacle, the lower level air layers do not have enough kinetic
energy to overcome the buoyancy force which tend to prevent them to get over the
obstacle. This type of atmospherical situation can further intense photochemical
episode by the pollution trapping upwind of the hill. The threshold of the air
block can not be predicted by the Long's theory. Our results have been, then,
compared with Stein [11] and show the same behavior.

4. VALLEY GENERATED LOCAL WINDS. Valleys create their own
climates by containing and channeling airflow within their physical boundaries
and by uaving different radiation budgets on their valleys slopes. It is important
to study and understand valley microclimates, mainly in relation to air pollution
and land uwe planning considerations. Very little previous work has been done
in modeling strong inversion conditions within small valleys. For a first study,
we have thus considered au idealized valley described in fig. 4. The initial
conditions are that a zero wind flow atmosphere with a stable stratification (N =
i0-.'1) above the inversion layer initially located at z = 1800m. The west

side of the valley is warmed up due to the solar radiation (Q = 350W/mn2 ),
whereas the opposite slope is still subjected to the nocturnal radiative cooling
(Q = -300W/m 2). These radiative fluxes are remained constant during the
simulation. This simple configuration tends to reproduce the sunrise in the North-
East valley of Grenoble. A more realistic study should take into account time-
dependent radiative fluxes. Fig. 5 highlights some characteristics of local winds
within a valley after two hours of simulated time. The differential solar heating
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of the valley slopes generate purely thermal effects such as the slopes winds
(anabatic wind along the west side; and katabatic wind on the opposite side),
and the along valley wind (also called drainage wind) due to the valley ground
slope. The order of magnitude of these local winds is in good agreement with
observations, i.e. 1 to 8 m/s.

5. CONCLUSION. Geographical effects have been validated on both the-
oritical analysis and experimental observations. Air pollution problem is essen-
tially associated to the local climatology, and therefore to the terrain generated
winds for cities located within complex terrain. The present results highlight
the appropriateness of ARPS.-SM to simulate air flow at urban scale. The fu-
ture developments will deal with a better description of the nature of the ground
(parametrization of the city), and the coupling with a simple dispersion model
for chemically reacting pollutants which will take into account all significant re-
actions occuring in the considered area.
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The horizontal and vertical structure of the vorticity field in
freely-decaying, stratified grid-turbulence

A.M. Fincham, T. Maxworthy & G.RL Spedding

Depawtment of Aerospace Engineering, University of Southern California,
Los Angeles, CA. 90089-1191

Full field DPIV measurements of strongly stratified grid turblenoe have been carried out for
long times (up to Nt-10O). Quasi.2D vortices were formed that were separated 'ertically
by saong horizontal vortex heets. Dissipation scales were resolved and an attempt has been
nade to determine the relative dissipation fractions in the horizontal and vertical planes. A
simple vortex model, involving a dense packing of dix-us shaped structures connected by
vortex lnes that alternate between horizontal and vertical orientation, is shown to be
consistent with the observed velocity and vorticity fields as well as the ratio of the measured
vorticity and length scales in orthogonal planes.

Introduction
In the low Froude number regime, one hypothesis for the approach to the final state of

stratified turbulence characterizes it as a field of quasi 2D vortices the members of which grow
in time by pairing, see Maxworthy, Caperan and Spedding [1987], Yap & Van-Atta [1993].
Many experiments, see the review of Hopfinger [1987], have characterized the initial collapse
and the statistical properties at early times. Numerical simulations by Metais & Herring
[1989], Lelong & Riley [1991] have more care~tfiy examined the vertical structure, and the
distribution of energy between wave and vortical modes. Experiments by Liu, Maxworthy &
Spedding [1987], and Browand, Guyomar & Yoon [1987] have provided information on the
vertical spacing of these vortical structures. Such structures are thought to model those found
in a stratifie ocean, where they would be interacting with mixing events covering a wide
range of scales in both space and time. The present experiments provide data for comparison
with numerical simulations and oceanic observation as well as for addressing the, as yet
unanswered question concerning the importance of the vertical coupling between horizontal
layers.
Experiments

The experiments were performed in a 2.4 rn square tank that was linearly stratified to a
depth of 15 cm with salt water. A rake of vertical flat-plates, of width W=3.8 cm and mesh
spacing M=15 cm, was towed the full length of the tank. The vertical plates minimized
internal wave generation and were chosen over rods as they provide a well defined separation
point, independent of the towing speed. Stepper motors drove both the rake and a profiling
conductivity probe used to measure the density gradient before and after each run. The good
replatability attained by this automated set up allowed the velocity fields in the horizontal and
vertical planes to be measured in separate realizations of the same experiment. A high
resolution Digital Particle Image Velocimetry (DPIV) system was developed. This system
was carefiully optimized to maximize the measurable range of scales and velocities by using a
combination of simulated and experimental flows. Under optimum conditions the measured
mean rms error on velocity is less than 2% (Fincham & Spedding [1994]). Fig.1 shows the
experimental facility anid the orientation of the measurement planes described below.

The measurements in the horizontal plane were made by densely seeding the central
isopycnal with polystyrene beads of diameter--800 micron and dei.ty 1.0473<p<1.0 477 and
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lighting uniformly from above. This technique requires no light slice (or refractive index
matching) and measurements of horizontal velocity were obtained on an isopycnal surface.
Two CCD cameras were synchronized in time to simultaneously resolve both the small
dissipation scales and the larger flow features.

Vertical plane measurements were made in a 20 cm -s 15 cm rectangle located in the
center of one end of the tank parallel to the rake. The fluid was seeded with micro-
encapsulated Rhodamine particles of diameter -50 /. An oscillating mirror was phase locked
to a single CCD camera and used to scan a thin vertical sheet of monochromatic laser light
across the test area. This arrangement allowed effective pulsing of the light sheet without the
complications associated with mechanical shuttering mechanisms.

Pairs of images were acquired direct to PC memory at 64 logarithmically spaced time
steps over the typical 30 minute duration of each experiment. Over 6000 images were
processed using a 2D spatial cross correlation to track groups of particles between image
pairs. Each resulting velocity field was viisually verified for "possible" wrong vectors before
being fit with a 2D smoodhing spline (Spedding & kignot [1993]) and spectrally "flip-filtered"
to remove grid scale fluctuations caused by pixel locking bias errors (Finhcam & Spedding
1994). Horizontal and vertical data planes were adjusted to a common origin in time based on
the location of the rake, statistical quantities could tLen be computed utilizing data from both
planes. Due to the discrete sampling, it was often necessary to fit quantities from one plane
with a continuous function of time so as to obtain values at times corresponding to
measurements in the orthogonal plane.

Experiments were performed for towing speeds of 0.5, 1, 2, 4 and 8 cm/ns and density
gradients with buoyancy frequencies, N, of 1 and 2 rad/s. The initial Reynolds number (Rem)
range, based on the mesh spacing M, and Froude number (Fr) range, based on the bar width
W, were700<Re < 12,000and 0.1 <Fr<2.
Results & Discussion

For a constant value of N, a noticeable change in horizontal and vertical -tructw'e was
observed as the towing speed was increased. This was associated with the individual wakes of
the rake bars undergoing a transition to turbulmece. Even after long times these differencms
were still evident in the kinetic energy decay rates. A general description of he flow at low
and high Reynolds number will be followed by a more detailed analysis of the viscous energy
dissipation. vortex interactions are then investigated with the help of a simple 3D vortex
model.
General structure

At low ReM [0(103)] a regular von Karman type of vortex shedding was observed in
the horizontal plane. The structures formed in this way immediately grouped together in a
complex sea of opposite-signed vortices, Fig.2(a),(b). There was an apparent transfer of' to....... Wwo &..... Vol UVy- giggi Vu -,,ua U Yat. U'% ", .•,
eiiergy to iau~c •awb as vortics grow by_. p g and _ difsion by. the siZ- ,0 h,
tank, Fig.2(c). The shed vortices immediately became unstable in the vertical plane as can be
seen from the inflections in the velocity profile in Fig.3(a); they quickly sheared apart
producing multiple layers of eddies Fig.3(h). These layers were characterized by strong
horizontal vorticity which has the sheet like appearance shown in Fig.3(c). Vertical
interactions appeared to play a major role in the development of the flow and specific
instances of merging of like signed vortex sheets were observed at all Reynolds mnubers. At
low speeds the vertical rake bars produced little vertical velocitv, but the fluctuating rms
velocities w and u decayed at the same rate, Fig.4(a). Horizontal length scalem were
computed from the integral of the longitudinal two-point velocity correlation function. This
integral scale L.p, was found to agree with a mean vortex diameter, D, computed from a vortex
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counting algorithm, Fig.5. A vertical length scale was obtained from averaged vertical power
spectra of the horizontal component of vorticity. Vertical, transverse two-point velocity
correlations indicated an approximately similar scale, which corresponded to some mean
spacing of like signed bands of vorticity and is henceforth equated to the vortex thickness, T..
Due to the small sampling area of the vertical light sheet the determination of this vertical
scale was noisy and biased toward thicker bands (larger scales contain more energy in the
spectra) but in general, it seems to agree quite well with that obtained from a manual counting
method.

At higher Rem [O(10 4)]the flow was initially fully turbulent immediately behind the
rake bars. Coherent horizontal vortex structures emerged from the collapsing wakes as the
vertical velocity component was suppressed by buoyancy forces. Quasi-2D vortex pairings
were accelerated due to the shorter eddy turnover times and D initially grew more quickly
than in the low Re runs, Fig. 5. In the vertical plane the layers were well developed by the
time of the first measurement, vertical overturning was evident and continued until the local
minimum gradient Richardson number was greater than 1, Fig.6. Initially w decayed more
quickly than u but after Nt-30 they both decayed at approximately the same rate, Fig.4(b).
Shearing between layers was large and th: horizontal rmis vorticity a4 was a factor of three
times stronger than the vertical rms vorticity of the larger horizontal structures themselves ak.
Energy Decay

The rate of decay of kinetic energy per unit volume, E, can be determined from a
power law fit of the EQ) data from both the horizontal and vertical planes. Decay rates
varied from t- 4 to t-1 as Rem was increased from 103 to 104. Energy was lost primarily to
viscous dissipation and a small increase in the mean potential energy due to a buoyancy flux
caused by small scale vertical mixing. Whitehead (1993), measured mixing efficiencies for a
stratified tank stirred by a single cylindrical rod, and extrapolating from his data, it is estimated
that less than 5% of the kinetic energy input by the rake is used for mixing. This is also
consistent with our own conductivity measurements. Furthermore any such mixing will occur
in the very early stages of the experiment right behind the grid, before our data acquisition
procesn has started. Other losses due to friction on the side walls and floor of the tank, cannot
be avoided but arc believed to be small.

Viscous dissipation due to in-plane velocity gradients can be computed from the strain
rate tensor, so, where dissipation due to gradients in a plane normal to the unit vector, k, is
given by:

a , -2 ijk where su=

For isotropic homogeneous turbulence, pure straining can be related to simple shear by,

-2, 0 -T)'- , [Batcheior(1953) pg. 110],

and from otinuity,

= -2a [Lamb (1932) pg. 580],

hence, the total dissipation &k can be expressed in terms of (1) , and the in-plane velocity

gradients will account for approximately 3, th's of the total energy dissipation.

The peaks in the dissipation spectra were fully resolved in both horizontal and vertical
planes so that all dissipation scales are accounted for. In-plane dissipations e and & were
computed from [1] for different Reynolds n6mbers. At low Re. the gradients in the



horizontal plane account for slightly over 20' of the total energy decay (E); this fraction is
quickly reduced to less than 5% with increasing Rem. Due to isotropy in the horizontal
plane&-,= and the total viscous dissipationzv can be expressed as:

+a 2&+ - - + 60+

At higher Rem vertical shearing increases, ( accounts for over W16 of &, and

a a2a t(see Fig.7.)
The relatively slow decay of these stratified flows at high Reynolds numbers, relative

to the isotropic homogeneous case E-t1.5, is directly related to a break-down of the isotropic
dissipation mechanism. Strong anisotropy in the strain field results as the rapid growth of
horizontal scales separates horizontal and vertical velocity gradients in wave-number space.

In these types of flow it appears that the energy is contained in oblate-spheroidal or
discus shaped structures, but is being dissipated in thin horizontal shear layers at their borders.
The smoothness of the vorticity fields, shown in Figs. 2 & 3, indicates a continuum of
structures that densely fill the volume. This suggests a vortex packing in which vortex lines
can connect a number of structures, as they meander through the fluid and eventually form
closed vortex loops. Vertical vorticity is bent horizontally in the high shear regions, these
dissipative vortex sheets can then connect with neighboring structures on either side, Fig.8.
This tendency, for vortex lines to connect to adjacent strutures, helps explain why we do not
observe the strong, isolated vortices often found in numerical simulations of 2D turbulence,
see for example McWilliams [1984].

A consequence of this model is that on average the total vertical-flux of vorticity
through a central, horizontal area within a structure, should be equivalent to the total
horizontal-flux of vorticity through a circular strip around its upper or lower half, see Fig.9.

Hence, on average:

[2] ý c&DE or , w2LTI
i; 42)2 2 air D

Where D and 7, are the mean diameter and thickness of the structures, respectively.
This appears to be a reasonable approximation that is independent of time, see Fig. 10.

Conclusions
The hypothesized two-dimensionality of collapsed stratified flows has been re-

examined in the light of the observation that strong, vertical shearing exists between
hodizontal layers, and the requirement that vortex lines form closed loops. This suggests a
complex 3D network of structures in which layers of eddies cannot evolve independently of
one a,,,othr. The velocivy fieds geieratd by tue sinulations of Metals & Herring [I989], see
their fig.22(b), in which the flow is initially dominated by the vortical component, have some
qualitative similarities to our measurements and a more detailed comparison involving 3D
eddy structures themselves should be made. No attempt has been made here to decouple wave
and vortex modes. Since we believe that meso-scale eddies in the ocean and stratosphere
exhibit similar interactions to those observed here, our measurements can be used to identify
the locations and dynamics of these sources of strong, local dissipation.
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STABILITY OF A LATERALLY CONFINED ROUND PLUME

by

Wai-tak Lee and Joseph Hun-wei Lee
Department of Civil and Structural Engineering

The University of Hong Kong, Hong Kcng

ABSTRAQ'' We study experimentally the mixing of a vertical round buoyant jet discharging
inside a concentric enclosure of diameter D, and height I1, before release into a large stagnant
ambient fluid. The flow characteristics are found to depend on a confinement index 0 =
HIr/(D, - D), where D is the jet diameter: i) for)3 > 1, a highly confined jet with negligible
dilution inside the enclosure; ii) for ,3 -+ 0, a free buoyant jet; and iii) for 1.5 < 13 < 2.8, an
unstable vertical jet resulting in a swirling wall-attached plume. The swirling frequency of the
unstable plume and the effect of the confinement on plume mixing are discussed.

1. INTRODUCTION

Wastewater is often discharged into shallow coastal waters as a series of adequately-spaced
turbulent buoyant jets from a submerged multipart diffuser. By virtue of the jet momentum and
buoyancy, rapid mixing of the effluent with the ambient sea water can be achieved. In some
designs, the outfall pipeline is laid in a dredged trench, and the sewage jet discharges inside a
protective riser tube befom release at the sea bed level into the surrounding sea (Fig. I a). Fur
example, in Hong Kong the typical depth of the dredged trench is 3 in, with a jet diameter of
0.1 - 0.15 m. The diameter of the concentric enclosing riser tube, however, is typically only
2 - 4 times the jet diameter. Whereas the mixing of a free round buoyant jet in still water has
been extensively studied, and reliable initial dilution predictions can be made (e.g. Fischer et
al. 1979; Muellenhoff et al. 1985), the effect of such a lateral confinement on the mechanics of
a buoyant jet has hitherto not been studied.

We study experimentally the mixing characteristics of a round buoyant jet (nozzle diameterD.') -iin•,e a~yside a concenrc enclosure (diameter D,) of height H,. (Fig.1b). The

discharge jet velocity, density and tracer concentration are W1 , pj and Cj respectively. At the
end of the lateral confiaement the mixed fluid enters a large, otherwise stagnant, receiving water
body with ambient density p. and tracer concentration C,. The scalar field of the confined
plume is measured. The observed behaviour of the buoyant plume, in particular the occurrence
of a swirling plume for a certain range of confinement, is presented herein. The effect of the
confinement on ihe initial dilution is also discussed.

_ _ _ -
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Figuxe 1: a) A round plume discharges inside a riser tube of a submarine sewage outfall; b) Schematic
diagram of a vertical buoyant jet in lateral confinement.

z. EXPERIMENTS
Dimensional analysis shows that a characteristic scalar concentration C at an elevation z above

the source is governed by:

C3  = f (Fr _______ z I1 .. ( D.1

C� PS D' Fr D' D ' D

where Fr is the jet densimetric Froude number. Further, our results suggest that the last two
parameters can be combined to form a confinement index # defined as Hr/(D, - D).

A comprehensive series of experiments have beer performed with a ve'Lical laterally confined
heatedjet with diameter D = 8-12mm, Fr = 3-15,D,/D = 2.6- 18, and H,/D = 15-30.
The combination of these parameters covered a wide range of confinement geometry. Tests in
otherwise stagnant ambient were. carried out both in i) a 1 m x 1 m by 0.5 m deep water
tank with constant depth and a cold inflow supply for jet enzrainment, and ii) a 10 in x 6 m
by 0.8 m deep shallow water basin. In each experiment, the radial termperature distribution
at diiferent elevations above the riscr was measured to an accutracy of 0.1i '% by an array of
calibrated Fenwal UTJA35J1 thermistor probes (response time 0.5 s). The mixing pattern and
ambient water intrusion into the riser tube were. visualized by sliadowgraph and laser-induced
fluorescence (LIF) techniques. In cases when a swirling plume is observed (see later discussion),
the swirling frequekicy was also detenmintd from the temperature time history at 4 equi-disiant
radial positions around the circumference of the riser exit, z = HI.. The wall pressure at the
inside base of the riser tube was also measured. A total of 159 experiments, which include some
tests with a uniform crossflow, have been performed. Details of the experimental set up and run
parameters can be found in Lee (1993).

_ _ .1
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3. RESULTS AND DISCUSSION

3.1 Observations of the Latera.ly Confined Plume

Both the flow visualization and the scalar field measurement show that the behaviour of the
buoyant jet varies considerably under different confining situations. The flow characteristics
can be categorized using the confinement index f.

Highly confined buoyant jet
When the confinement index is large (H,/D >> 1 or DrID -+ 1), say fl > 10, the buoyant jet
is highly confined. Fig. 2 (a) and (b) show two highly confined jets, one at high Froude number
(> 10) and the otber at low Fr (< 10). The jet mixes with the water inside the riser as it rises
by virtue of its initial momentum and buoyancy. The jet increases its width and quickly hits the
riser wall. Eventually, th. mixed effluent fills up the whole riser, with virtually no dilution; the
nearly undiluted effluent discharges into the ambient fluid from the riser exit, which acts as a
bigger nozzle.

(a) (b) (c)
Hr=1SD Ir- 15 D Hr= 5D

Dr=2.5D Dr=2.5D Dr=4.5 D

03=10 6= 10 j-=4.3

high Pr low Fr

Jet fills up the riser completely At low Froude number, intrusion Extent of intrusion increases asoccurs sporadically. 0 decrases.

l- = I D lir= 15D

Dr - 7.5 D Dr= 12D

At sufficient small f4, the plume Confinement has no effect on the
attachs to the wall and swirls buoyant jet.
within the riser.

Figure 2: Flow pattern of a laterally confined buoyant jet at different confinement geometries, (a) highly
confined jet at high Fr; (b) highly confined jet at low Fr; (c) moderately confined jet; (d) unstable
confined jet; and (e) weakly confined jet.
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If we define a riser Froudr, number Fr* (based on the average velocity at the riser exit and
the riser diameter), then for Fr* > 1, no ambient water intrudes into the riser since the inertia
force of the jet outweighs the buoyant force (Wilkinson 1988). As the discharge decreases,
and Fr* ; 1, sporadic but minor incipient intrusion occurs. As the jet discharge decreases
further, the ambient fluid penetrates deeper into the riser and a counter flow is established. If
we assume that there is no dilution within the confinement, Fr = Fr*(Dr/D)'2 -; for example,
if Dr/D = 2.5, Fr should be at least 10 to avoid intrusion into the riser. As the diameter ratio
increases, higher jet Froude number is required to prevent intrusion.

Moderately confined buoyant jet
Asf/ decreases (Dr/D increases or H,/D decreases) the flow pattern is similar to that of the
highly confined jet, except that the extent of intrusion is greater (Fig.2c); dilution of the efflu-
ent starts within the riser. At given Fr, the amount of dilution achieved within the riser will
be greater for smaller fl. When Dr is large compared to the jet width of tht corresponding
unconfined buoyant jet at the level of riser exit, significant intrusion occurs and the ambient
water descends even to the near bottom of the riser before it is entrained into the buoyant jet.
This downward current together with the ascending buoyant jet produces a vigorous shear layer
which enhances entrainment and mixing.

Unstable contied buoyant.jet
For 1.5 < /3 < 2.8, an interesting circumferential instability is observed. The buoyant jet is
always deflected to the riser wall instead of remaining at the axis of symmetry. Once instability
occurs, the plume remains attached to the riser wall and swirls around within the riser at a distinct
frequency (Fig.2d). Fig.3 shows L]F images (digitized and post-processed to enhance quality)
of the centre plane of the swirling plume as well as the moderately and highly confined plumes.
The intrusion of the outside ambient fluid into the riser and the deflection of the swirling plume
can be clearly observed.

This phenomenon is illustrated in Fig.4 for four experiments with P3 = 3.6,2.1 & 1.7, and
1.5 (corresponding to the moderately confined, unstable, and weakly confined situations). For
each experiment, the time..history of the temperature recordings at four sampling points located
around the circumference of, and slightly above the riser exit, z = H:, is shown along with the
power spectrum. The signal peaks and troughs represent respectively stages of passage of the
swirling buoyant heated plume and intruding cold ambient water.

For /3 = 3.6, Fig.4 shows that the ambient water intrudes into the riser randomly. However,
when the vertical plume is unstable, as illustrated by /3 = 2.1, it is clear the wall-attached plume
rotates within the riser at a distinct frequency. The signals at the four stations indicate a definite
sequence of peaks; in this case the direction is anti-clockwise - i.e. W,S,E, and N; whenever
a peak is observed at a particular point, a trough is also observed at the diametrically opposite
station. When /3 decreases further to 1.7, instability is still observed, although the fluctuations
within each peak increase. There is no apparent preferred direction of rotation; both clockwise
and anti-clockwise rotation have been observed even for experiments with the same/3.

.I
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Figure 4: Temperature time history at 4 locations (N, E, S, W) at circumfeience of riser exit, z = H., for
,6 = a) 3.6, b) 2.1, c) 1.7 and d) 1.5 (0.IV ; 4 °C )

Although a theoretical explanation of this instability has yet to be offered, the results have
been checked carefully by experiments; the instability is not due to the scale of the experimental
setup, error in vertical jet alignment, or any initial swirl of the jet discharge.

Weakly confined buoyant 1jet
When # < 1.5, the riser wall is too far away to exert any influence and the confinement has little
effect on the buoyant jet. The jet deflects no more and is stable again (Fig.2e). Near the riser
exit, ambient condition prevails most of the time (Fig.4d).

-|
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3.2 Swirling frequency of the unstable buoyant jet

For 1.5 < p3 < 2.8, a distinct peak is observed in the power spectrum indicating a distinct
swirling frequency f. The magnitude of the peak varies firom case to case, depending on the
temperature difference and the location of sampling. For the swirling plume within the riser,
if we adopt the riser diameter Dr and V'g as the length and velocity scales respectively,
it can be shown that the Strouhal number, St = f D/Wj, depends on VD /D/Fr. Fig.5
shows that the dimensionless swirling frequency is linearly proportional to Fr-' for different
confinement ratios. It is interesting to note that this result suggests that such an instability or
swirling plume will be absent for a pure momentum jet, Fr --- 00. This is also suppoiled by
limited observations in our experiments.

4. CONCLUDING REMARKS

The behaviour of a laterally confined vertical buoyant jet has been studied experimentally. The
results can be well-interpreted with the use of a confinement index/3. When 1.5 < #3 -< 2.8,
an instability which results in a swirling plume is observed. The swirling frequency can be
correlated with the jet discharge and confinement geometry parameters. In Fig.6 we show
the dimensionless concentration as a function of elevation, Compared with the free buoyant
jet (Chen & Rodi 1980), the mixing of such a confined jet is severely impaired for large [3.
However, the dilution of the swirling plume is actually greater (lower concentration) than that
of a corresponding free buoyant jet,3 0- 0, Limited experiments with a crossflow have also
been performed. Numerical calculations with a free shear layer model have also resulted in
a qualitative understanding of the effect of confinement on the pressure and flow field (Lee 1993).

ACKNOWLEDGEMENT: This work was supported by a research grant from the Croucher
Foundation.
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Buoyant Surface Discharges into Unsteady Ambient Flows

Jonathan D. Nash and Gerhard H. Jirka
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Abstrct

The dynamics of buoyant surface discharges into unsteady ambient crossflows have
been studied in a schematic experiment, simulating the specific case of tidally reversing
flows. The time evolution of th', discharge is shown to be uniquely related to the jet-
to-unsteady-crossflow scale measures: a length scale L, = (Mo/IduG/dtl) 1/3 and time
scale T. = (Mo/1dut/dt14)/ 6 which relate the discharge momentum flux MO to the
acceleration du./dt of the ambient flow. The experiments show that jet parameters, such
as the buoyancy build-up around reversal amd the unsteady trajectory deflection, can be
represented in a reasonably self-similar fashion if these scales are used for normalization.

Introduction
Many buoyant discharges occur in the coastal environment, where the ambient flow is time-
varying. Time-evolving turbulent jets or plumes result from the interaction between these
discharges and the accclerating oi decelerating ambient current. Examples include such geo-
physical flowE as rivers entering tidal estuaries and man-made effluxes from municipal or
industrial sources, such as cooling water discharges. Many other flows which are not tidally
miversing, such as wind driven crtrents, may also exhibit significant time variance, making the
characterization of jet behavior in unsteady flows important.

Earlier studies have cousidered the mixing of buoyant surface jets under two limiting con-
ditions. First, discharges into a stagnant ambient (e.g. Hayashi and Shuto [4]) have shown an
initial strongly entraining jet region followed by the buoyant damping and collapse leading to
an unsteady buoyant pool with horizontally spreading density fronts. Second, discharges into a
uniform steady crossflow (e.g. Abdelwahed and Chu [1]) exhibit time-invariant behavior with
gradual deflection of the surface plume and final advection by the cressflow. Appropriate length
scales for these processes and predictive models (usually in form of jet integral equations) have
been developed and shown to be reasonably accurate measures of the mixing processes under
these limiting coitditL.ns (see Jirka et al. [5], Chu and Jirka [3], Jones and Jirka [6]).

In contrast, little is known about the behavior of buoyant discharges in highly unsteady
ambient environments, which include velocity reversals. A few studies (e.g. Brocard [2],
Padmanabhan [8]) performed site-specific model investigations of coastal cooling-water dis-
charges, which qualitatively show the unsteady jet deflection that decreases as the tidal velocity
diminishes, the build-up of a buoyant: pool near slack conditions, front formation, and the re-
entrainment of mixed effluent into the jet in the accelerating phase after reversal. However, no
quantitative measures have been developed which characterize these processes arising from the
dynamic interaction of the discharge parameters with the degree of ambient unsteadiness. In par-
ticular, specific length and time scale measures have not been identified so far that appropriately
describe this unsteady interaction.

The development of such quantitative measures and elucidation of these unsteady dynamics
is the objective of this study. In particular, a schematic model has been used to simulate a generic
thermal discharge into a time-varying, turbulent ambient flow. The model conditions replicate a
typical cooling water discharge into a deep, tidally reversing current, but scaling arguments allow
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Figure 1: Plan and cross-sectional views of a buoyant discharge at some velocity aU(t).

the present results to be extended to many other time-varying flows. This report systematically
investigates the effects of linear changes in velocity on near field mixing of a thersal discharge
in order to determine 1) when unsteadiness can be considered negligible and steady-sLate models
accurately applied; and 2) how these effects can be characterized universaJly using length and
time scale arguments.

Length and Time Scales: Steady and Unsteady Conditions

Steady ambient conditions: The structure of a buoyant surface discharge and its interaction
with a steady receiving environment is described primarily by the discharge buoyancy (Jo) and
momentum (M0 ) fluxes, and the receiving water body's depth (II) and velocity u,, (see figure 1).
Length and time scales can be formed from these four parameters using dimensional analysis.
First, the transition where the initial jet momentum becomes dominated by buoyant spreading
is described by the jet-to-plume scales:

/ MoLM= - T =

which represent the transition distance (LM) and development time (TM), the internal clock of
a buoyant discharge.

In addition, the jet-to-plume length scale LM provides a measure of the maximum depth of
the jet h.,,x, and is used to determine whether bottom interaction will produce a shallow, two-
dimensional jet, where full depth mixing blocks the ambient flow, deflecting the mean current
around the discharge, or a deep discharge situation having negligible bottom interaction. Only
deep discharges, given by the condition LM/H < 1 (Jirka et al. [55), aze considered here.

A meamure of the deflection of the jet is the jet-to-crossflow length szale,

L,• MO/2

which relates the discharge momentum to the crossflow velocity, u.. Using steady-state analysis,
the properties of near field mixing and trajectory can be shown to depend primarily on the non-
dimensional parameter, LM/L,,.

2
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Figure 2: The tidal velocity variation (scaled by the maximum velocity ua) may have significantly
different rates of reversal at slack tide.

Unsteady ambient conditions: Figure 2 shows the large variation in ambient tidal velocity profiles
u.(t), that arises from the local coastal morphology. This variation gives rise to different rates
of acczeleration du.(t)/dt, a parameter found to be critical in characterizing unsteady flows.

The variation of the jet-to-crossflow length scale L" over a sinusoidal tidal half-cycle is
displayed in Figure 3. (The physical dimensions given in the figure correspond to the present
laboratory simulation which represent dynamically scaled ambient conditions.) Near slack tide,
u.(t) - 0, L,, becomes unbounded and thus is an unsatisfactory measure of the buoyant jet
behavior under these weak and transient ambient velocity conditions.

A preferred measure for describing the unsteady trajectory and the build-up of the buoyant
pool in this transient low-velocity phase is given by a relationship between discharge momentum
flux MO and the ambient acceleration du0(t)/dt, which, in contrast to L., remains finite as
u( t) --+ 0. On dimensional grounds, this leads to the jet-to-unsteady-crossflow length and time
scales (reversal scales):

L MO ) 1/3MO.1/

L ( at T = (i1

Although other scales can be formed from the interaction between the discharge buoyancy flux
JO aud atFibieut acccicration, dua(t)/dt, those scales are not considered dominant, following
Jirkaet al. [5] who showed that buoyant surfacejet deflection in crossflow is primarily influenced
by the discharge momentum, not the buoyancy.

Physically, the reversal length scale is representative of the distance at which the effects of
acceleration become appreciable. Figure 3 shows the interplay between the two length scales
L,, and L. for a typical coastal discharge. During most of the tidal cycle, L, >> Lm, so that the
ambient acceleration is negligible compared to the instantaneous velocity. However, as slack
tide is approached, L. < L,,,, and the reversal length scale becomes the dominant influence.

The anmuunt of the pooling resulting from buoyant accumulation of discharge can be related
to the time during which the ambient can be considered quiescent (slack tide). If the ambient
velccity is approximated as having a linear variation with time (u0(t) = [ý (]0 t) then the duration
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Figure 3: Variation of the length scales L... and L, during a sinusoidal change in the ambient
velocity uQ((t). In the interval -T,, <t < T,,, the length scale L.. becomes very large, indicating
that the crossflow velocity has negligible effect on the plume. L, remains constant and finite
during this interval, and becomes the dominant scale. Dimensions relate to experimental
simulation.

of slack tide, as defined by the intersection of L1, and L,,, in figure 3, is given by i = ±T,,. The
time scale T,, can thus be interpreted as the duration of slack tide. For most flows, this time scale
is much greater than the intrinsic discharge time scale TM, indicating that there is a relatively
long time period during which the instantaneous velocity is unimportant, when the plume may
fully evolve through the influence of the unsteadiness alone (- L).

Thus, for unsteady flows, the nondimensional parameter of LM/L,, is proposed to replace
LM/L,,, to uniquely characterize the geometry and mixing of the flow during reversal. In
addition, this ratio also describes the duration of slack tide, as LM/L,, = VI TrM/T,, and thus
reflects the temporal as well as the spatial behavior of the discharge. This proposal is investigated
in the experimental simulation.

Experimental Simulations

A 1:125 scale model, based on densimetric Froude number similarity, was chosen to investigate
the near field behavior of a typical prototype thermal surface discharge (M0 = 10m4 /s2 , uo =
lux/s, To = 20'C, LM = 13.6 cm) and ambient (H = 12.5 m, T = 14*C) under fully turbulent
conditions (miodel discharge Reynolds number Re '- 3000).

A continuous time series of surface temperature mappings was obtained in a 6 m x 8 m
x 20 cm deep reversing flow basin using Planar Laser Induced Fluorescence (PLIF). Although
the model tidal excursion is A,,, - 70 m, this basin is large enough to contain the entire
plume evolution while the effects of unsteadiness are significant (-T,. < t < T,,), which is the
important consideration in this experiment. The mappings were stored on Super-VHIS video,
and digitized at times of interest.

The application of PLIF to such large scales with density stratification requires special
image processing (Nash et al. [7]), as turbulent density gradients cause substantial reflection
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Figure 4: Time series of instantaneous surface temperature mapping& (plan view) shows the
evolution of the plume (L,, = 3 1. 8 cm, T,, = 46.9 s) during ambient flow reversal. Distances in

cm. The most significant effects of the unsteadiness occur over the interval (-2 < t/T, < 2),
and at distances approximately f > L,,/2 - 15 cm from the outfall site. At t./T, = ±2.69 the
plume shows only slight asymmetry.

and refraction of the illuminating laser sheet. By calculating the spatial gradient of the im-
age, this attenuation due to turbulent density gradient fluctuations can be found, and through
calibration of the image with six temperature probes, an algorithm can be applied to produce
accurate representations of the flow for both flow visualization and quantitative temperature
measurements.

Four linearly transient velocity variations with constant du. (t)/dt, ranging from very rapid
(du/dt),, = 0.02 cm/s2 to very mild (du./dt)m = 0.005 cm/s2 , and varying between ve-
locity plateaus of ut = ±6 cm/s were chosen to represent typical environmental flows. This
linear representation is a good approximation in the time frame of reversal (see figure 3). For
comparison, figure 3 shows anl acceleration around reversal of (du./dt)m, = 0.0085 cm/s2 .

A typical time series of near-surface temperature distributions, as indicated by the grey scales
of the video images obtained from the PLIF method, is shown in Figure 4 for a case of a surface
jet in rapidly reversing flow (LuiLM = 2.4). The mappings reveal the asymmetricai behavior
of the jet before and after reversal, and maximum induced temperature rise occurring slightly
after slack tide. The effects of unsteadiness become negligible outside tile duration of slack
tide (t < -Tu and t >> Tu), and mappings having the same instantaneous velocity become
symmetric before and after reversal.

The detailed aualysis of all the unsteady simulations conducted shows that the time evolution
of plume trajectory and mixing has, indeed, a substantial dependence on the rate of ambient
acceleration, du./dt, given in relative terms by the scales Lu and T,,. The experiments reveal, as
hypothesized, that the temperature buildup, or pool formation around slack tide is more severe
in less rapid reversals, as there is a longer duration for buoyant accumulation. In contrast,
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Figure 5: Time variation of centerline temperature excess at given distances along the trajectory.
Self-similar behavior is achieved after normalization by the unsteady scales L,, and T•.

discharges into quickly reversing current have little time for near field accumulation, but have

highly asymmetrical trajectories before and after slack tide.
A buoyant surface discharge can be described by its centerline trajectory and buoyancy

(temperature) decay along that trajectory. Sorme unique, approximately self-similar, properties -
of the unsteady jet behavior can be extracted from die complete data series if the appropriate :
scale measures, L,, and T,, are employed. This is demonstrat*ed in the following for two
unsteady plume measures: the maximum centerline temperature rise at a given distance along
the trajectory, and the centerline trajectory.

Figure 5a shows the induced temperature rise (normalized by the discharge temperature
excess) at given distance along the trajectory as a function of time within dhe simulated tidal
variation. The plot reveals that the less rapid reversal produces die greatest temperature rise 30
cm from the outfall site. On the other hand, if the temperature measurements are made at distance
I = L,,, specific for each time series, along the centerline and if time is 'also nondimnensionalized
by T,, relative to slack tide, then these temporal and spatial effects produce a single unique
curve (see figure 5b), supporting die significance of the scales L,, and T,,. The peak in this plot
represents the buoyant buildup resulting from the rapidity of the reversal, indicating that die

efcsof t,,e i~ute~tadins aesig Slfic", ita, for t I < 2T',, (Lrn > L,,,/2).
Figure 6 displays die unsteady trajectories at a given instantaneous velocity, u6 = -±0.45

cm/s (before and after reversal). A large variation with the ambient acceleration ,, L,. is evident.
Because the mappings represent a specific time t and instantaneous velocity u,(t), large scale
time averaging has not been performed, and the effect of individual eddies can be observed in die
trajectories. The effect of using the appropriate scaling is demonstrated in figure 7 which shows
the corresponding non-dimensional trajectories, scaled by L,, and displayed at a consistent time
t = ±E/,./2 before and after die reversal. Despite some lingering scatter the different trajectories
exhibit reasonably unique behavior.
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Conclusions

The present experimental investigation demonstrates that buoyant surface discharges in unsteady
ambient flows exhibit self-similar geometry and mixing. However, correct time and length
scales must be used to elicit these properties. The unsteady reversal conditions, in particular, are
governed by a relation between the discharge momentum flux and the ambient flow acceleration,
giving rise to the jet-to-unsteady-crossflow scales, L,, and T,.

From the data, it is proposed that the ratio of the steady to unsteady crossflow scaies L, /L"
will describe the importance of the unsteadiness in a deep, time-varying ambient. Specifically,
the unsteadiness is expected to be dominant when L,/L,, > 1/2. Using this criteria, slack tide
can be defined by the interval -2T, < t < 2Tý: a duration where mixing is governed primarily
by the unsteadiness of the flow, and steady-state analysis is not applicable. Furthermore, it is
expected that the ratio LM/L, will characterize the discharge during these transient corditions,
in analogy to the steady-state ratio LM /L,. A full characterization of the similarity relations
governing buoyant discharges is the topic of ongoing research, including ihe discharge into an
unsteady shallow ambient, where the persistence of strong recirculation zones plays a large role
in the time evolution of a jet.

We gratefully acknowledge research support from the State of Maryland (Power Plant
Research Program) and the U.S. Environmental Protection Agency.
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ABSTRACT
Experiments were conducted in a laboratory tank to determine the effect of a crossflow on the
evolution of a bubble plume. Cross flow was simulated by towing the bubble source in a
quiescent fluid. This allowed the flow field to be scanned with a sttknary light sheet and a

i.DA. Flow visualization shows how the liquid flow passes through the bubble stream. The
buoyancy force generates shear layers which develop into a system of counterrotating vortices
in the wake. LDA-measurements allow a quantification of the location and the vertical
velocity in the plume as a function of buoyancy flux and cross flow velocity.

INTRODUCTION
Several lakes in Switzerland are aerated by bubble plumes for maintaining an adequate
concentration of oxygen. These lakes are eutrophic due to an excessive growth of algae in
summer. The oxidation of this organic material depletes the oxygen in the lower layer. In
winter, when these lakes are nc -tratified, compressed air is released at the bottom to create a
plume that intensifies the natu.i convection. Oxygen of the air is then mainly dissolved at the
free surface and transported to greater depth by the recurn flow. In summer, when the lakes are
stratified, the oxygenation is performed by a discharge of small bubbles of oxygen at the

bottom which are dissolved in the hypolimnion. These bubble plumes are exposed to lateral
currents.

There are specific differences between a thermal plume and. a bubble plume, which become

especially important when the plume is exposed to a cross flow. The density difference which
drives the thermal plume is a property of the fluid, and this buoyancy is dispersed by mixing
with the entrained fluid only. The water flow in a bubble plume is driven by the drag of the
bubbles, a force which can be described in an integral model as a mean buoyancy determined
by the void fraction. Due to the slip velocity of the bubbles this buoyancy is transported at a
different velocity than the fluid and carn leave the fluid parcel which was accelerated at one
time.
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In u horizontal cross flow the horizontal component of the fluid velocity, c, is, to a first order,
not affected by the vertical acceleration due to the bubbles. When the bubbles are released
locally and rise in a body of water with a cross flow they form an inclined bubble plume as
shown in Fig. 1. The horizontally moving fluid which enters the bubble region (zone I) is
accelerated and displaced vertically. After leaving the bubble region the fluid retains its
vertical and horizontal motion due to its momentum (zone II). An inclined bubble plume in a
cross flow shows a behavior between the limiting cases of a stationary bubble plume (c=0)
and a bubble line thermal (c>>w) where a volume of air per unit length is released at time t=O.

EXPERIMENTS
The experiments were conducted in a 5.8m x 3m and 3m deep laboratory tank with glass walls
on the longer walls and additional observation windows on the shorter sides. Three types of
bubble sources were used for the release of compressed air at the bottom of the tank: (1) a
point source, consisting of a tube of 1 mm diameter, (2) a porous ceramic plate of 50 mm
diameter, and (3) a porous plate of 150 mm diameter. The point source produced bubbles with
equivalent diameters of 5 to 15 mm. The porous plates had a bubble size spectrum between
0.2 and 3 mm, which depended on the gas discharge per unit area. The flow rates, Q, were
chosen 1, 3 and 10 normal cm 3 /s.

The crossflow was simulated by towing the source along the bottom of the tank at the
crossflow velocity, c (Fig. 2). The steady flow to be modeled was pioduced in the frame of
reference moving with the source. This method has the advantage, that a stationary instrument
or visualization setup can be utilized to scan the flow field. The data is recorded in time
sequence and can be transformed into a steady spatial distribution. A steady light sheet in the
tank normal to the tow-velocity was used to visualize the spatial distribution of the flow field.
Neutrally buoyant particles of 100gm diameter were used as tracers. These particles were
exposed for times of 3-5 s. The velocity was measured on the axis of symmetry of the bubble
plume and in its wake with a two-component Laser-Doppler-Anemometer (LDA).

The inclined plume of the point source is sbown in Fig. 3 in a double exposue, which was
used for the determination of the slip velocity, wb and the carriage velocity, c. The bubbles at
the upstream edge of zone I rise in fluid with vertical velocity, w=0, with their slip velocity
w'r.The narrow spectrum of bubble size leads to a uniform slip velocity with the consequence
that the bubbles move together upward along the line z=x wL/c. The plume of the sources (2)
and (3) showed a diffe'ent behavior. The wider distributions of bubble sizes and of slip
velocities lead to a seperation of the faster rising larger bubbles from the smaller bubbles.
From the variation of inclination of the different bubble paths in Fig.1 and the cross flow
velocity, c=20 mm/s, it can be estimated, that the larger bubbles have a rise velocity of 330
mm/s and that the smaller bubbles move with 65 mm/s. The rise velocity is the sum of the
fluid velocity and the slip velocity.
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RESULTS 4
The visualization shows that the shear layers produced by the buoyancy force roll up into two
rows of discrete vortices on both sides of a meandering wake (Fig. 4). The streamline pattern
as sketched in Fig. 5 shows the topology of the flow with its vortices, the corresponding
stagnation points, and the entrainment from the compensating downward flow in the tank. Fig.
7 shows the positions y(xi), z(xi) of the vortex cores in different cross planes x=xi, and the
positions of the cores in a side view.

This set of vortices develops out of the "uniform" shear layer produced by the inclined bubble
plume. It seems to find its stable form when the vortices in the two rows are staggered and the
distance of the vortices to its nearest neighbors is (within ±15%) the same across the wake as
in the same row. The vortices move then vertically upward as sketched in Fig. 5 based on the
Biot-Savart-law. At the upstream edge of the bubble plume the vorticity lines are connected.

Meandring Wake
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I!

I \•
i Return

I • '

i ••:•• -Flow y

Point

I \ -, I

P int L' "

Trailing = g iZX grad AL
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Fig. 5: Sketch of the streamline pattern, Fig. 6: Sketch illustrating the accumulation
corresponding to Fig. 4, showing the vortices, of vorticity in cross flow direction during
the return flow ann the stagnation points, the traverse of a fluid parcel through
The displacement due to the Biot-Savart-law the bubble region.
of one vortex is indicated by arrows.
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It follows from an analysis of the vorticity generated by the density gradients of the inclined
bubble plume that the vorticity component in the cross flow direction finally dominates the
flow in the wake. In every horizontal plane z=•z, the density distribution in the inclined bubble
plume has roughly a bell shaped form with a maximum at the center and a decrease to zero in
all directions as sketched in Fig. 6. A fluid particle, which traverses the region of the bubbles
due to the crossflow, integrates the rate of change of vorticity along its path. The vorticity
component normal to the crossflow direction is first increasing and decreasing afterwards to
zero again. The voW.city component in crossflow direction integrates on one side to a positive
value, on the opposite side to negative value. This statement holds as long as the density
distribution is independent of z, and the horizontal acceleration of the fluid due to its vertical
displacement is neglected. In reality, a fluid particle will move slower near the upstrem edge
of the bubbles region and acquire a small vorticity component normal to the cross flow.
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Fig. 7: Position of the vortices in the wake. Left: (y,z) plane, right: (x,z)-plane),
Q=10 cm /s, c=80 mim/s, point source (1).
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LDA-measurements on the axis of the inclined bubble plume of the spatial velocity
distibution w(x), averaged over 12 individual runs, are shown in Fig. 8 for z--O.53m and for
increasing tow-velocity, c. When the tow-velocity, c, is zero, w(x) is identical with the radial
velocity profile of a statioinary plume. With increasing c, the limit of a bubble thermal from a
line source is approached. The maximum of w(x) gets shifted in the flow direction due to the
increased inclination of the plume. The maximum also decreases due to the reduced air
concentration. Fluid accelaration within the bubbles (zone I) and the wake (zone II) can
clearly be distinguished (Fig. 1).

The LDA data, w(x), gives information on the maximum velocity Wmax and on its locationxmax
as well as on the decrease of the velocity in the wake. The spatial distribution depends on the
buoyancy flux, B=gQ, on the tow-velocity, c, and on the height z. In the following, results for
the point source with its narrow size spectrum (Fig. 3) and a water depth, h=2 m are given.
Fig. 9 shows different locations (xax,z) for two cross flow velocities. The points of maximum
velocity are, as expected, located closly behind the bubbles which follow the line z=xwb/c.
This behavior is different from the behavic±" of a thermul plume in a cross flow, which follows
a line z - x0 14 for a weak cross flow (c<<w), and z _ x213 for a strong cross flow (c>>w)
(Fischer et al., 1979).
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Fig. 9: Position of the maximum of w(x) relative to the line, z=xwb/c of the bubbles.
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Fig. 10: Scaling of the measured maximum of w(x) with Wo=(BWb/ZoC) 13

Based on the idea that a bubble plume m. a cross flow with c>>w can be regarded as line
thermal the following scaling of the vetdcal velocity can be postulated. From the buoyancy,
A, per unit length of thr. tuermal and the time, t, a velocity scale, (A/t) 1P can be formed
(Escudier and Maxworthy, 1973). A is related to the buoyancy flux. B, of the inclined plume
by Adx=Bdt, where dx/dt=c, is the cross flow velocity. It follows that A=B/c. The time, t, is
given by "wb. It results a velocity scale, wN of

W0= (Bwb/zc)l) = (B/xo) 1/3

for Wmax at the Light z. In Fig. 10 wmax is compared with w0 . The proposed scaling represents the
variations of w max for z=0.53m quite weUl. At z=l.53m the scaling is successful for the smaller
gas discharge, only. Obviously this scaling fails in the limit c--0.

In Fig. 11 the decrease of the velocity in the wake is represented in a (log w/w ,log x-x 0 ) plot
for c=28 mm/s and z0=1.5 m, and xo=zoc/wb It shows a decay with (x-xo) , which is
equivalent to w 2 -(xxa)-"
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Fig. 11: Plot of (log w/w0, log x-x0), showing the decrease of w(x) in the wake.

CONCLUSIONS
The bubble stream released locally at the bottom of a body of water with a cross flow forms
an inclined bubble plume along the line z=-xwb/c. As the cross flow passes through the bubble
stream, a system of staggered counterrotating vortices is generated with vorticity in cross flow
direction. This system is different from the vortex structures observed in shear- and mixing-
layers. Maximum flow velocities are observed at the downstream edge of the bubbles.
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Destratification of Reservoir with Bubble
Plume

Takashi Asaeda * Hirokazu Ikeda t Jrg Imberger land Vu Thanh Ca §

Abstract
The process of the destratification of a reservoir using bubble

plume was investigated experimentally and numerically. It was found
that an improved double-plume model simulated this process well.
With strong bubbling and weak stratification, lower layer water, lifted
by the gas released from the bottom could reach the free surface but
with low bubbling rate and strong stratification, only a dome was
formed on the interface without the lower layer water reaching the
free surface.

In both cases the lower layer water is mixed with the upper layer
water, spreads out, plunges to the neutral buoyancy level, and pro-
duces a stratified intermediate layer between the upper and the lower
layers. Both upper and lower layers axe eroded by the evolution of the
intermediate layer, bounded from these layers by fronts. In the former
case, the upper front ascends fast with a small density jump, whereas
the lower front descends slowly preserving a large density jump. In the
latter case, both the upper and the lower fronts behave in a reverse
manner.

1 Introduction
Observational data suggest that stratification in natural water bodies often resembles
a step stratification (Imberger & Patterson, 1989). The simplest structure with a step
stratification is the two-layered system. In this case, with the application of bubble plume
to the water body, a unique intrusion is formed between the layers, which is the same
pattern as occurs in uni-phase gravity plumes (Germeles, 1975, Kumagai, 1984). Unlike
the uni-phase plume, however, the continuous supply of buoyancy due to bubbles leads to
higher mixing in the upper layer. This easily establishes a large column of the lower layer
water throughout the upper layer for sufficient gas flow rate (Baines & Leitch, 1992).

The purpose of this study is to illuminate the structure of bubble plume in the two-
layered stratification and the destratification process.

2 Experimental Procedures and Flow Pattern of Bub-
ble Plume

Two tanks with lmnxlm section, 80cm deep (T-series) and 2mx2m section, 1.8m deep
(BT-series) were used alternatively depending on the experimental purposes. A bubble

*Department of Civil and Environmental Engineering, Saitama University, Japan
tDepartmeat of Civil Engineering, Utsunomya University, Japan
tCenter for Water Research, The University of Western Australia, Australia
1Depa.rtment of Civil and Environmental Engineering, Saitara, University, Japan
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Figure 1: Schematic diagram of typical flow patterns. (a) Strong bubbling and weak
stratification; (b) Weak bubbling and strong stratification. Solid spirals show strong
eddies, and dash-dotted arrows, fluid motion.

maker was installed at the center of the bottom of the tanks. It was connected to a
compressor with a tube, in the middle of which was attached a relief to adjust the gas
flow rate to the bubble maker. A gas flow meter was inserted between the relief and the
compressor. A two-layered step stratification was made in the tank using salt water. The
bubble maker consisted of a tube with a circular ceramic top, through which gas was
decomposed into fine bubbles (Asaeda and Imberger, 1993).

Density profiles were measured using a movable conductivity probe for both series.
The probe moved vertically at 1cm/see, measuring conductivity at every 1.82mm for the
T-series, and 4.6mm for the BT series. In addition, density profiles in a vertical section
were measured at every 10cm in the section, including the plume axis.

The instantaneous flow structure was visualized by the shadow graph method, with
light source at the density interface height. The accumulated diffusion of the plume water
was visualized by dye injected Scm above the bubble maker. The visualized structure was
photographed and then analyzed.

Results of experiments revealed that, the bubbles induced an upward plume in the
lower layer, which broke through the interface forming a column of lower-layer water
there. Because of its high density, the water fell down to an interface, where it spread out
radially. The intrusion reduced its advancement rate when it experienced the side-wall
effects. Then, the sectional density is uniformized gradually, becoming an intermediate
layer. After that, the following water intruded at the neutral level in the intermediate
layer thickened the layer both upwards and downwards.

According to the relation between the bubbling rate and the stratification intensity,
two different regimes were observed.

When the bubbling rate was high and the stratification was relatively weak (Figure 1a),
the plume broke through the interface with large momentum and reached the free surface
without losing the lower-layer water. After impinging on the free surface violently, the
water spread out horizontally before suddenly plunged down into the water body together
with a large amount of the ambient surface water. This formed an annular downdraft
around the inner upward plume. In this regime, the density of the downdraft is closer to
that of the upper layer water than to that of the lower-layer. Therefore, the intermediate
layer was separated from the lower layer by a strong density jump (lower front), and from
the upper layer by a weak density jump (upper front). This flow pattern is called "type
V7.
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Figure 2: Isopicnals of a vertical section: (a) type 1, (b) type 2.

With low bubbling rate and relatively strong stratification, the upward momentum
associated with bubbling built up a dome of the lower-layer water on the interface (Figure
1b). After reaching the top of the dome, the water fell along the side slope down to the
interface. Since a small amount of upper layer water was entrained into the dome, the
density of the intermediate layer was closer to that of the lower layer than that of the
upper layer. Therefore, the layer was separated from the upper layer with a large density
jump (upper front), whereas, from the lower layer with a small density jump (lower front).
This flow pattern will be called "type 2".

Isopicnals of the vertical sections indicated in Figures 2 are also reveal clearly the two
flow patterns.

With the formation of the intermediate layer, the original two-layered system is de-
formed into three-layered one, then the original upper and lower layers are gradually
eroded by the intermediate layer.

In type 1, the intermediate layer expands more upwards than downwards. In type 2,
on the other hand, the intermediate layer erodes the lower layer more rapidly than the
upper layer. The lower front descends gradually through the water underneath carried
up above it by'the plume (Baines, 1974), i.e.,

"dzi Q A(zl) (1)

where, z, is the lower front height, Q,(z) is the volume flux of water at z, A is the sectional
area of the container, and t is time.

At the height of the lower front, the volume flux of gas is given by Qo9HA/(H2, - ZJ),
where H. = II+HA; H1 and Qo are the water depth and gas flow rate at the bubble source,
respectively; HA is the atmospheric pressure head; g is the gravitational acceleration. The
descend rate of the lower front has been determined as

d-- _ 0.45(- ./x2

3(1- HaX )
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Figure 3: The height of the lower front; calculated results of (3) in comparison with the
experiments. Calculated results (HR = 0.118): - - - = 0.25;
xo = 0.6; ,x0 = 0.8. Experimental results: squares, BT-4,5,9 (xo = 0.2 f-' 0.3);
circles, BT-1,2,10 (zo = 0.55 -.s 0.65); triangles, BT-3,6,7,11 (xo = 0.75 - 0.85).

where zj = zj/H is the nondimensional height, r T= (47ra2HMI 3 uBt)/A is the nondimen-
sional time, u& is the bubble slip velocity, HR = H/HT, and r and M/j are later defined
in (6).

The above relation is shown in Figure 3. Associated with the reduction of zi, Q"(zi)
decreases and the descending rate of the lower front is deccelerated.

The upper front advances at the rate of the entrainment of the upper layer water
through the front. Its height z, is, therefore,

dz,,_ Q,. (3)
dt A

where Q, is the entrainment rate of the upper-layer water.
Unlike the flux through the lower front, however, the flux through the upper front

is much affected by the gravity force which the plume receives in the intermediate layer.
Figure 4 shows Q, as a function of z,. It can be found that the entrainmaent rate decreases
significantly even with the small rise of the upper front.

At first, the plume directly attacks the front without losing momentum, causing a
high entrainment rate. However, as the intermediate layer thickening, the plume loses
its upward momentum in the layer, before attacking the upper front. Eventually, less
amount of the upper layer water is entrained.

A following relationship was obtained

D = 80F,? for F2 < 0.053 (4)
H7 - zo-

D = 1 for F,2 > 0.053 (5)HT - zo

where F, = {QogHA/[zo(HI - Zo)]} 213 /[gT1 (HT - zo)], g.1 is the initial reduced gravity
difference between the lower layer water and the upper layer water, D is the height of the
column of the lower layer water in the upper layer, and z0 denotes the initial height of
the interface. The boundary between type 1 and 2 is F,2 = 0.053.
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Figure 4: The entrainment through the upper front as a function of the front height.
Swith open circles: BT-1, ...... with open squares: BT-3, - - - - with open
diamonds: BT-4, -------- with X: BT-7, -- - ----- with open triangles: T-2, ---
.-.. with closed circles: T-3, ........ with closed squares: T-4, and . .... with
closed diamonds: T-5.

3 Analysis of the evolution of the intermediate layer
As was described, with the evolution of the intermediate layer, it becomes difficult to
relate the flow paitern to the initial conditions and bubbling rate. Therefore, a numerical
model is introduced to analyze the flow pattern at any stage and the destratification
process.

Similarly with the linearly stratified case (Asaeda & Imberger, 1993), the double-plume
integral model was used to simulate the density distribution in the ambient.

Using nondimensionalizing variables

z = xHx, r, = 2aHRI, r 2 = 2aHR2 , v, u=MHI3 V, V2 = u.MHt/V 2,

U2MH213IG U32
UB g2 M_ G2,MapGaH• = 1 ,92 -- H I a-= T, = Y)

2 2 -Gil = G - (1 - Hrx)(VI + Mj'I 3)()AR 1 )2' M, = (QogHA)/(47arcHj.uB'), (6)

where v denotes the vertical velocity; r the plume radius, subscripts 1 and 2 denote the
inner and the outer plume variables; and g• = g(p. - Pl)/Pr, g' = g(p2 - p=)/P, alid pa is
the density of the ambient water, pr is a reference density. The liquid density of the inner
plume is given by gll = g' - gAB, with AB is the total fraction occupied by gas. Here,
it is assumed that pressures are constant across the section, the velocity and density are
assumed to have a top-hat profile, and the diffusion effect is neglected. ap, ay, and a are
the entrainment coefficients for the outer to inner plumes, the inner to outer plumes, and
the ambient to the outer plume respectively. A is the ratio of radii of the bubble core and
the inner plume. The notations are given in Figure 5

Equations of the conservations of mass, momentum and buoyancy are derived as
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Figure 5: The diagram of the double-plume model, (a) general structure, (b) near the
plunging zone.

d(RIV1) = _l v(VI - V2) - Yi ) (7)dx
d(.RV12) = R 2 G,+ PR1 V2(V - V2) +-yR 1 V1 V2 (8

dx1(8
d(RV 1 ) 2

2 d

dx R dx OI2(1-V)+-R 2I

d _V _
+ d (1 - xBR)(V, + M-113 ) (9)

for the inner plume

d(S2 V2*) = -=_R1 (V1 - V2) - -yRIV2 - R2V2  (10)

d(S = S'G2- s 2 -6R•V 2 (V1 -V2 ) --RVV2  (11)
dx

d(S2 V2 G2 ) $ _ d _ V - V/) 1 "/R1 VG 1  (1.2)

dx =-2V !31?1G2 (Vl 2 yV 1

for the outer plume

The ambient density evolution is calculated by introducing the assumption that the
equivalent amount of water to the intrusion spreads immediately over the container sec-
tion.

The inner plume equations (7) through (9) are integrated up with suitable starting
conditions. Since the plume starts in the homogeneous lower layer, the condition of thle
single plume (McDougall, 1978, and Asaeda & Imberger, 1993) was used. For the first
integration up the inner plume, the presence of the outer plume was ignored.

When the plume does not reach the free surface, the inner plume stops rising in the
upper layer, which is the beginning of the outer downdraft.

Nondimensionalization leads to the starting conditions of the outer plume given by



-- --- ...........-

. .............. .......

05- 0OK

0. .2 • ....... 14

--- 8418 -- 8418

0.0 0.5 1.0 0.0 0.5 1.0

( , .) b2)0 -. 0 )/(.0 1- U)

Figure 6: Examples o- the sim] nated evolution of the ambient stratification in comparison
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2G- Gi (13)

2 v.(14)
R2 1+S (15

"he outer plume equations are integrated down to the neutral buoyancy level During
this downward ir.hegration, the vlues used for RI. Vi, and G, at each level are those

derived by the previous integration up the inner plume. An intrusion forms at the neutral
blioyancy level. This prucess was repeated until it converged; the criterion foý the conver-

ewas less than % difference in the buoyancy of the inner piume from the previous
-alue.

The entrainment coefficient a was taken as the value of a pure plume, 0.083, and.fi
výs giv-.u by 0.5. ^, equals unity, sirn ce it corresponds to the falling outer d:aft.

"ort.case that tbe inner plume reaches the fLice surface, the water flows out radially
:-.aon- the free suriace, then suddenly plunges into the water body. Assuming the homioge-
neous density foz " surface outflow, the nondimensional inii;ial quantities of the outflow
are related to th.,. kuner plume values by

Gl = : (16G

Vif=0 cjVul (17)
Al 1 - HLy GIH = R yI (18)

S-Lt) -, R-(I- - Hi-•)(Vul + Mbf' 1 ) (18)

..neie s'.bscrin ts I and s denote the vatues at the impingement region and of the surface
jet respectively; in non&d lensionai form R1 is the radius of the point where the horizontal
Jet starts, 11, is the initial LWhckiess of the b) .zontal jet, V¾, G1, and G2If are the velocity



and the reduced gravity of the inner plume and the reduced gravity of the water at 1- H.1 ,
V,a and G0 , are the velocity and the reduced gravity at the beginning of the horizontal
jet, and KL is the energy loss coefficient (=0.2), zx is the nondimensional height of the
lower boundary of the impingement zone(= 1 - HI). x1 , G, 1 , and V,1 are obtained by
solving (16) to (18) simultancously using the quantities of the inner plume.

In the ambient, the mass and the momentum conservations of the bubble plume are
given by

=G(X I RV, + S2V2) 9G. (x) (19)
4r A OX

Therefore, the density at z is

(RI(X)2V1(X) + S2 (X)V2 (X))Ar
G(z,r + Ar)= G(X + A I , VF)+(20)

Intrusion velocity was assumed to be infinite. Therefore, the new layer, G'(zi,') in
density, and -(S(zit)v2V(zi,,))/A in thickness, was inserted at the neutral buoyancy level.

Figure 7 depicts the evolution of the ambient stratification simulated using the double-
plume model (Figure 7 a) and measured in the experiment (BT-3) (Figure 7 b). It is clear
that the double-plume model can simulate the phenomena with satisfactory accuracy.
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Abstract

Waste water is generally disposed of, in the ocean, via an outfall. The outfall pipeline,
resting on or beneath the ocean floor, transports the waste water offshore to the disposal
site. At this site the effluent is discharged through a diffuser. Diffusers take on a variety of
forms, ranging from a simple pipe with a number of holes placed alternately on either side,
to a complex system of risers and radial diffusers typical of large scale tunnelled outfalls.
The prediction of the initial dilution of the positively buoyant waste water plumes as
they rise from the diffuser to the ocean surface is an important step in assessing the
performance of any proposed diffuser configuration. In this paper we consider how the
interaction of adjacent plumes (due to insufficient port spacing) influences the dilution
efficiency of the outfall diffuser. The diffuser configuration studied is that of a pipe with
ports placed alternately on either side and the ambient fluid is assumed to be quiescent
and well mixed. We present an integral model which uses an under pressure concept
to incorporate the effects of plume interaction on the dilution of effluent above such a
diffuser. Where the close proximity of neighbouring plumes results in deficiencies in the
quantities of fluid available for entrainment, additional currents are induced in the ambient
fluid to meet these demands. These induced currents create pressure differentials across
the plumes and the resulting forces bring the plumes together. Data from the model
agrees satisfactorily with the laboratory data of Liseth [7], although further experimental
investigations of these merging phenomena are required.

Introduction

At the beginning of this century waste water outfagis commonly consisted of a pipe dis-
charging untreated effluent onto a beach in a remote 3ocation. Remote areas of the past
soon became suburbs and with an increasing public awareness of environmental quality
these types of discharges have become unacceptable. Unsightly discharges of this na-
ture have gradually been replaced with waste water disposal systems which comprise of a
treatment plant, a pipeline and a diffuser. The treated effluent is carried via the pipeline
along (or beneath) the ocean floor to an offshore disposal site. At the terminus a diffuser
splits the discharge into a uumber of smaller discharges. These fresh water discharges into
a denser salt water environment produce turbulent plumes rising towards the ocean sur-

f1



4

face. This turbulent mixing greatly enhances the dilution of the effluent and consequently
reduces the impact on the local environment.

Traditionally diffusers were designed to pr-vide ample ambient fluid for entrainment
into the rising effluent plumes and hence ports were sufficiently spaced to allow plumes
to rise to the surface individually. In conjunction with this design philosophy there has
been a significant research effort into methods of predicting the behaviour of single buoy-
ant discharges and there are now a number of models available that can predict with
reasonable accuracy plume behaviour for a variety of ambient conditions (Lee et al. [6],
Wood [12]). However, where there axe practical limits on the length of the diffuser section
the rising plumes interact before they reach the surface. Indeed a recent investigation by
Cheng et al. [3] indicates that where there are persistent currents such interaction may
be desirable. In this paper we present a model a single plume as it rises to the surface
and interacts with neighbouring plumes. We consider a plume near the centre of a long
diffuser and edge effects are therefore neglected. The ports are equally spaced and we
assume the ambient fluid is stagnant and unstratified. We believe the concepts developed
in this model can be applied to other plume interaction problems such as discharges from
radial diffusers typical of large scale tunnel outfall systems (Roberts et al. [11])

The Model

Plumes axe typically discharged on alternate sides of the diffuser as shown in figure 1.
A representative discharge is initially axisymmetry, but as it grows through turbulent
entrainment it begins to interact with neighbouring plumes on the same side of the diffuser.
It eventually merges with these plumes to form a two dimensional plume. Identical
behaviour on the other side of the diffuser generates a second two dimensional plume and
a vertical plane of symmetry exists midway between these two two dimensional plumes
at the diffuser centre line. Assuming the two two dimensional plumes are identical there
will be no nett mass or momentum fluxes across this plane of symmetry. Thus there is a
limit on the local ambient fluid available for entrainment into the inner sides of the two
dimensional plumes. Fluid flows up from the areas below where merging began to satisfy
the entrainment demands of the plumes (figure 1). These additional induced currents
reduce the pressure on the inner side of lhe plumes creating a pressure difference across
each of the plumes. The resulting force brings the two two dimensional plumes together
and as they merge they exert positive pressures on each other reducing their horizontal
momentums to zero. This region is similar to that of a jet hitting a flat plate and one
would expect some down flow associated with the changes in the vertical momentum of
the plumes. This down flow will form a small pocket of buoyant fluid resting below the
merging plumes. When the merging of the two two dimensional plumes is complete a
single two dimensional plume has formed and it rises vertically towards the surface.

In developing a model it is perhaps best to divide the plume into regions of distinct
behaviour. We will define Region 1 as the initial axisymmetric region. Region 2 where
the plumnes merge on each side of the diffuser to form two two dimensional plumes and
these plumes are drawn together due to additional induced currents in the ambient fluid.
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The region where the two two dimensional plumes merge above the outfall diffuser will
be designated Region 3 and finally Region 4 where the plume rises vertically as a single
two dimensional plume.

7 vertical planes of symmetry
"".

4ij ... . .i: .;.. additional

I.,' j~ ;.j ' : '.
1 IJi Currnts

"•I-A SECTION A-A

Figure 1: A schematic diagram of the central part of a long diffuser

In addition to the central plane of symmetry discussed above vertical planes of symme-try, through which we can assume no nett fluxes of mass or momentum, also exist midwaybetween plumes on the same side of the diffuser. Thus we can consider the beh~aviour ofa single plume within an open box bounded by the three fr'ictionless planes of symmetry.Within this symmetry frame we can define the behaviour of the plume as it rises towardsthe surface. We begin by defining general equations which apply in all four regions andthen define the modifications necesdaay to describe the specialised behaviour in Regions 2and 3. Cartesian coordinates (x, y, z) originate from the source and s measures distancealong the plume centre line from this origin. The distance h is measured from the plumecentreline normal to the y - .s plane. These coordinates are shown in figure 1.
The plume volume flux (q) and momentum flux (M) can be written as:

q =Iq Ub M? , and M = , U b ,;(1)

T3 k~i:;
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in which

1=361-5? U b y (2)
fI ' _ g -a g-U b T, ,

r3br ri[U 2 d dI (3
1- 3bi J , P

t, is the distance between the port centre lines on the same side of the diffuser,
iU is the time averaged velocity,
U is the plume centreline value of -9, and
b is a representative plume radius defined as the distance from the centre line to

a point where U = exp(-1)U,

Assuming that the results of Miller et al. [8] and Bradbury [2] for two dimensional jets
can be applied to this problem we neglect the turbulent flux term in the definition of T'.

The plume buoyancy (B) and flux of density deficit (qao) can be written as:

B = IaAbS, and qAo = 1,UAbtp; (4)

in which

Al6 ~A dy dh (5)
[A 36 A b Z',d5

IA 1.19 31 Al U S d (6)3b A U b i,

A- is time average density difference (__) multiplied by the gravitational acceleration
(), and

A is the plume centre line value of Ae.

The constant 1.19 in the definition of Ia replaces a turbulent flux term (Papanicolaou

[9]).

These equations have been developed for a finite control volume extending from -t,
to Z. in the y direction and from -3b to 3b in the h direction. A finite control volume ex-
tending across essentially the whole plume (-3b, 3b) was chosen because we are interested
in quantifying the external forces acting on the plume. This subtlety has a negligible
effect on the values of the shape functions 4,, hn, !ha and !6 when compared to those
developed for a control volume exteuding from -oo to co in the h direction.

The values of the shape functions depend on the shape of the velocity and density
distributions and these shapes change as the plumes interact and merge with one another.
For a line of identical discharges we define the velocity and density distributions as:

- ap -['j 2 z exp - [I J_]
2

U r- , exp [t+p-]2 ) and (7)

4
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- [A~(~o [v~ej
2
)(8)

~ exp -

Simplified definitions of the shape function were developed for the merging of the two
dimensional plumes in Region 3. Taking the definition of I, as an example; in the three
dimensional limit (I < 0.3) it has the form:

rrb
7n = 7 b (9)

and in the two dimensional limit (- > 0.8) it becomes a constant:

I. = 42 (10)

The variations of this and the other functions between these limiting forms are shown in
Davidson et al. [4].

If we define fi as the clockwise angle between a tangent to the plume centre line and
the horizontal plane; we can then write the horizontal momentum (MH) as:

M1 -' = Mcos/3 (11)

and the vertical momentum (Mv) as:

Mv = Msin/3. (12)

The momentum equations are then written in the following form:

dMHj dMv
d = F ,and - = B + FV1 . (13)ds z' s

Where .J: and F,, represent the effect of external forces acting on the control volume and
their definitions are dependent upon the Region we are modelling. In Regions I and 4 the
plumes are unaf'Icted by the behaviour of neighbouring plumes and hence .%' = F, = 0.
In Region 4 the additional induced currents in the irrvtational ambient fluid near the
inner side ojl plume reduce the pressure. The pressure difference between the inner and
outer sides of the plume can be defined using the Bernoulli equation and this difference
generates an external force acting on the control volume leading to following definitions
of Tý. and F-:

.Y ý =-esin/3, and T7V = - (14)

In which U. is the average velocity of the additional induced currents. These currents are
defined as the ambient fluid passing by the control volume as opposed to the entrained
f3uid which passes into it. The additional induced velocity is further defined by:

U= Q- (15)Aul'

where A, is the area between the inner side of the plume and the vcrtical plane of sym-
metry passing through the diffuser centreline. We define the volume flux of fluid passing

V&5



by the control volume (Q,) by considering the conservation of volume flux in the area
confined by the plume and the planes of symmetry. This dictates that the decrease in the
volume flux of fluid passing by the control volume must equal an be opposite to the flux
of fluid into the control volume due to entrainment on the inner side of the plume. This
will be approximately one half of the total flux into the control volume (dQe). We can
therefore write: d Q ,, _ 1 d Q • _ _14d ( • b p .( 6

ds 2 ds 2 ds

In Region 3 the plumes merge and exert a positive pressure on each other reducing
their respective horizontal momentums to zero. The horizontal force required to achieve
this can be determined by considering a control volume which extends from the point
where merging begins to the point where the plumes are rising vertically. This force will
be applied over some length scale whbch we arbitraxily assume to equal 4b. Using a cosine
function to apply the force smoothly we get following form for F•:

ImU2 btp[ (2w(8m) sni
4 = 4b C 4 (17)

in which s,8 is value of s at the point where the two two dimensional plumes being to
merge. A vertical force associated with the small pool of fluid resting below the merging
plumes will also be exerted on the control volume. However, for the moment we assume
that the effect of this force is small and hence F. = 0.

The geometric relationships can be defined generally as:

dx MH dy Mv
d T and --- M (18)

dsd M

The spread equation is:

dbd- k9 (19)

where the constant k = 0.11 (Papanicolaou [9]) and the function g = 1 in Regions 1,3
and 4. In Region 2 the spread of the plume will be reduced by the induced currents on
the inner side of the plume- This reduction will be similar to that for a jet in a cofiowing
current and following Patel [10] we can define G as:

2U - U(20)

2U

The equations described above can be organised into a system of ordinaxy-differential
equations and solved with a Runge-Kutta routine. Initial conditions are determined at
the end of the zone of flow establishment and are based on the results of Ayoub [1]. At
the beginning of Region 3 however, an additional equation is introduced and an initial

6



value of the volume flux passing by the control volume Q•a is required. As there is
no information available for estimating this value it has been determined through trial
and error. The value of Qi must be just sufficient to meet the entrainment demands
prior to the merging of the two two dimensional plumes. Indications from the model are
that this value is sensitive to port spacing, less sensitive to the port Froude number and
least sensitive to the diffuser diameter. Predictions of dilution data from this model are
compared with the experimental data of Liseth in figure 2.

50 1 . . . . -

Frp/lp. =0.01
S< 0.15 0.5

S0.5±10%
+ 1.0±10%
x 2.0±10%
e 3.0±10% 2.0

10

/

S3.0

0.5

110 100

z./ Frp

rigure ~ ~ ~ ~ ~~. 2:Mnmmdlto S -- versus depth. In which Ap is the value of A at
the port and A,, is the minimum value of AX in a cross section. The subscript * indicates
division by the port diameter- (dp). The port Fr~oude number (Frp) is defined by the port
exit velocity (Up), A-p and dp.

Conclusions

Considering the significant variations in the data the model predicts the dilutions reason-
ably well and somewhat better than previous attempts to model this problem (Davidson
[5], Wood [131). The principle reason is the inclusion of the effects of the induced currents
on the vertical momentum of the plume. Previously this has been assumed to be in-
significant. Results from the model indicate the induced currents on the inner side of the
plume reach niagnutudes as high as 50 percent of the centre line mean velocity and have
a significau~t effect. on the vertical antd horizontal momentum of the plume. The model

7
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also indicates that plume interaction alters the shape, spread, dilution and trajectories
of a plume. A detailed experimental investigation is now required to further assess and
modify the assumptions made during the development of this model.
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Particle Clouds In Density Stratified Environments
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A particle cloud descending in a stably stratified fluid entrains or captures ambient fluid.
The cloud reaches a maximum depth when its downward motion is arrested by its loss of
buoyancy due to the entrained fluid and to the particles separating mom the particle cloud.
The captured fluid then rebounds to its level of neutral buoyancy. It is shown via
laboratory experiments and a numerical model that the maximum penetration and final
depths of the captured fluid depend upon the non-dimensional buoyancy of the particles
and the non-dimensional settling velocity of the individual particles where the non-
dimensionalising variables are the fluid density and stratification.

Introduction

Each year vast quantities of particulate matter are dumped into the ocean. In 1990 over 20
Gigatonnes of dredge spoil was disposed of in this way with some individual releases from
bottom dump barges exceeding 15,000 tonnes. Additionally some 40 Megatonners of sewage
sludge and industrial wastes were also dumped into the ocean, usually on the continental
margins. The dispersion of material disposed of in this manner is of environmental concern and
this paper aims to clarify certain aspects of the settling processes in stratified water bodies.

The behaviour of clouds of dense particles sinking in homogeneous fluids has been examined
experimentally by Nakatsuji, Tamai and Murota (1990) and by Rahimipour and Wilkinson
(1992). These itudies indicated that following their release, an initially packed group of dense
particles would accelerate downwards with shear forces at the boundaries of the group
producing turbulent motions which cause the particles to disperse into a particle cloud. The
effective density of the cloud was reduced by this process and the particles acted more like a
distributed buoyancy. The velocity of the cloud reached a maximum and its form approached
the mushroom shape of a miscible thermal. The characteristic internal circulation of a self-
preserving thermal was strongly evident, a necessary requirement for the development of this
phase was that the fall velocity of individual particles within the cloud should be much less than
the velocity of the cloud itself. Figure 1 shows a photograph of a particle cloud in the self-
preserving thermal phase. The strong vortical structure characteristic of thermals is clearly
visible and it can be seen that most of the particles are contained within the vortex ring
comprising the thermal. When sinking in homogeneous fluid, the negative buoyancy
(submerged weight) of the cloud remains constant as in a simple miscible thermal and its
increasing volume due to entrained ambient fluid causes its velocity to decrease. This can also
be demonstrated by means of simple scaling arguments.

Figure 1 Photograph of a
particle cloud in the self-
preserving thermal phase. The
cloud was illuminated by a light
sheet traversing its central axis.
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Scaling Relationships

Consider a mass of particles M with individual particles having density pp and settling velocity
Ws in a fluid of density p. The submged weight or effective buoyancy of the particle mass
(bwceforth referred to as simply "the buoyancy") is given by

B = PPS--P-gM (2)

where g is gravitational acceleration.

If a group of particles is released from rest, and there are sufficient numbers of them so that the
group accelerates to a velocity which is substantially greater than the settling velocity of
individual particles, then they behave as if they were a distributed buoyancy and the resulting
particle cloud has a structure which is thermal-like. TIhe velocity of the particle group during the
phase of initial acceleration scales as

W = (BI (3)

where B/M is a measure of the group's acceleration.

Once in the self-preserving thermal phase, the characteristics of a particle cloud in ambient fluid
of uniform density are determined by its buoyancy, its distance z from some virtual origin and
the fluid density. On dimensional grounds its size (expressed in terms of its overall radius R) is
given by

R = clz (4)

and its velocity w by

W = c 2 (1)/I 2 z-1 (5)

_____ __ __ -,"



where cl and C2 are constants with values of 0.34 and 1.5 respectively where z is taken as
positive downwards. Equating velocities in the initial acceleration phase and the thermal phase
gives the extent of the acceleration phase Za as

Za = (Mýl1S3(6)

It will be noted from Eq. (5) that the velocity of the cloud in the thermal phase decreases as it
sinks so that ultimately it will approach the settling velocity of particles within the cloud. At this
stage, velocities of circulation within the loud induced by entrainment of ambient fluid into the
cloud are insufficient to advect the particles with them. The buoyancy can no longer be
regarded as distributed and the thermal-like structure decays. The extent zt of the thermal-like
phase in a homogeneous fluid is obtained by comparing the thermal velocity with that of the
particles to give

A = M1 12 wil (7)

Biihler and Papantoniou (1991) argued that during the final phase in which the cloud evolves
into a 'swarm' of sinking particles, the flow remains nearly self-preserving and entrainment is
primarily through the frontal face of the swarm. The velocity of the swarm is close to the
settling velocity of individual particles and momentum and continuity arguments led to the cloud
radius increasing as z 1/3 or z1 depending on whether the entrainment velocity scales as the
velocity of fluid passing through the swarm or the much larger fall velocity of the particles
themselves. The former relationship would seem the more probable in that during this phase
the particles occupy only a small fraction of the fluid region affected by their presence. Blihler
and Papantoniou pointed out (with admirable honesty) that their experimental data was unable to
resolve between the two power laws because of uncertainties regarding the location of the
virtual origin.

Ambient Stratification

The pressure of stratification in the ambient fluid has a profound influence on the behaviour of
the particle clouds. Fluid entrained into the cloud becomes buoyant as it is advected in the cloud
below its level of capture. Thus the buoyancy of the cloud decreases as the cloud sinks. The
structure of the cloud remains thermal-like as long as the cloud velocity is sufficiently greater
than the settling velocity of the particles. The particles are then maintained in the circulation and
act as a distributed buoyancy. Ultimately, however, the downward motion of the cloud is
arrested by its loss of buoyancy and at this point the particles move as a swarm from the
interstitial fluid which rebounds to a higher level because of its buoyancy. Figure 2 shows the
motion of the cloud in a linearly stratified fluid.

The penetration (zp) of a miscible thermal into a stratified environment scales as

~ ~( ) ~(8)zP= ýAB ý11

where N is the buoyancy frequency defined by

N = (g Jp 112 (9)
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The velocity of the therma, is no longer given by the simple formulation of Eq.5 and because
the motion is oscillatory may be multivalued for any specified depth z. Dimensional analysis of
the relevant vatiables yields a relationship of the form

w fj~~pN1/1"4](10)
(BN•2/1p) 4

where f1 denotes a funcdional relationship.

The particles separate from the thermal when its velocity is comparable with die settling velocity
of individual particles and the distance to this transition zt is therefore

z = _14

Thus separation can occur at any stige depending on the settling velocity of the particles.
However, if the particle settling velocity is smaU ccmpared vith t~pical velocta.ez of the thenmnAl
[ch&aeterised by (BN,2/p)1141 then they will iiot leave the thermal untl it has ne2rly reached its
maximtuxi depth. In such cases, the maximum depth of penetration and the OThal equilibrium
depth would be relatively insensitive to Ws. The emi iws/(BDN 2 /p)1/ 4 is a cI,'Thd number for
particle clouds in a stratified fluid and will be termed NCS.

Mathematical Modelling
To proceed further analytically it is necessary to involve the ,:ona¢rvation iwvs go' eming the
phe nomeo,.n... Trlhe conser.iatoii laws for mass, buoyaniy anid iomenturo are:

dR = 2Ewl (12-)
dt
dv- a Idpw

+ (pt-p)4EFtR'iwi = 0 (C3)



[M-(I + V)( +VPt)]'-Y- + (1 +xV)pt4E~rR 2WUd dt(14)

= gM(i- r + FD +(p-pdVg

where: V is the volume of the particle cloud
FD is the drag force acting on the particle cloud
E is the entrainment coefficient
rd is the relative density of the particles
pt is the density of fluid within the particle cloud
y is the virtual mass coefficient

and: p = zdp + p (15)
dz

4_3S -• (16)

FD = CDrR2p W2 (17)

where CD is the drag coefficient. Equations (12), (13) and (14) are derived on the basis that the
fluid is incompressible and that the Boussinesq approximation may be used. Also, it is
assumed that there are negligible losses of momentum and buoyancy to the wake of the particle
cloud (Escudier and Maxworthy, 1973).

Numerical Modelling
The conservation equations were converted to a difference form and solved numerically. The
numerical model showed that form drag played a relatively small role in the particle cloud
behaviour. For simplicity, di- eii,•.rn.rnaent coefficient E was kept fixed at a value of 0.31 while
the thermal was descending. For later times E was set to zero as the laboratory experiments
indicated that circulation in a particle cloud is rapidly weakened during this stage. The virtual
mass coefficient V was fixed at a value of 0.5 (see Escudier and Maxworthy, 1973). The
motion and distribution of particles within a particle cloud are constantly changing with time
and, for this reason, are difficult to parameterise. In the modelling it was assumed that the
particles are uniformly distributed within the cloud until the fall velocity ws of the particles
exceeds the fall velocity w of particle cloud at which time the particles separate from the cloud.
Releasing the particles at earlier times made relatively little difference to the results provided that
the mass of the particle cloud was considerably greater than the mass of the particles at the time
of the release.

Of the parameters in Equations (12) to (17), the stratification dp/dz and the mass M, played the... ,a determining the paiu• ~iuuu ucuavour The rmodel was iun with par "cles of
0.1 mm diameter and having a relative dersity of 2.5 giving a corresponding particle fall
velocity of around 7 mm s-1. All model runs were done such that the non-dimensional particle
fall velocity Nes was much less than unity. Thus, from (11), the depth z of particle cloud can
be normalised by (B/pN 2) 114. The time t can be normalised by l1(21cN). Figure 3 shows
results from the model for a variety of stratifications and particle masses. It is quite clear that
the model results collapse very well when normalised despite the stratification and particle
masses each spanning over a decade of values.
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Figure 3 Numerical modelling results for particles of 0. 1 mm diameter and having a
relative density of 2.5. In a) 1 g of particles were released with stratifications of I (thin
line), 5 (medium line), 10 (thick line), 20 (thin dashed line) and 40 kg/m4 (medium
dashed line). In c) a stratification of 10 kg/m 4 was used with particle masses of 0.5
(medium line), 1 (thick line), 2 (thin dashed line) and 4 g (medium dashed line). b) and d)
show normalised versions of a) and c) respectively where the normalised depth is given
by z/(B/pN 2)1/4 and the normalised time by Nt/2t. Note that the normalised period of
oscillation is not quite 1 unit in duration because of the viru mass of tured P'id.
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Experiments
Particle releases were examined in a 1 m x 1 m x 0.8 m deep glass tmak. The tank was
linearly (salinity) stratified using the two tank method. Particles were released at the surface of
the tank using a syringe with the end cut off. This proved to be successful in releasing all of the
particles virtually simultaneously without imparting undue momentum to the particles. Particles
consisted of either glass beads, sand, brass filings, crushed quartz or plastic beads. This
resulted in relative densities ranging from approximately 1.5 to 7.8. Particle sizes varied from
0.15 mm to 2.3 mm. Dye was added to the particles via a small amount of finely crushed
potassium permanganate crystals. The dye crystals rapidly dissolved within the fluid captured
by the particle cloud. This dyed fluid was then digitised from video images. The digital images
were used to calculate the position of the centroid of the particle cloud (fluid) and its size.
Figure 2 shows a series of the digitised images for a particle release. It is quite noticeable that
the particle cloud (fluid) has a considerable lateral spread following the particle cloud reaching
its depth of maximum penetration.

9. U0

-0 .5 ...... ----- -- . ... ............ ................................ ................ ...............

-1.5 -----..... .. . ..... -
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Figure 4 Normalised experimental results for maximum penetration depth (open
symbols) and final depth (solid symbols) for fluid captured by particle clouds. The final
depths in the laboratory experiments were measured once the oscillations in the depth of
the captured fluid had basically ceased. Values of the stratified cloud number Ncs
between 0.03 and 0.06 are indicated by squares, between 0.07 and 0.09 by circles and
greater than 0.10 by diamonds. The line shown is the curve produced by the numerical
model for the case where Ncs is equal to .03. It should be noted that the oscillations in

h for the experiments were dampened more rapidly than those predicted by the
model. Therefore, the experimental results for the final depth (ie solid symbols) should
only be compared with the average final depth for the model results (dashed line).



The experimental results consistently showed smaller maximum penetration depths than the
numerical results (see Figure 4). It is expected that this is due to the cloud number Ncs being
more significant than in the numerical modelling. Despite some scatter in the experimental data,
a general trend of decreasing maximum penetration distance Zp with increasing values of Ncs is
evident from Figure 4 (as the cloud number Ncs increases, the particles drop out of the particle
cloud at an earlier stage and reduce the buoyancy B of the cloud). Another possible effect may
be greatly increased drag on the particle cloud due to the ambient fluid being stratified (energy is
radiated away by internd waves). Both of these effects are currently being investigated in more
detail.

The final depths of the fluid entrained by the particle clouds was consistently greater by a small
amount than the final value indicated by the modelling. The greater the maximum penetration
depth zp, the greater the final equilibrium depth, suggesting that the maximum equilibrium depth
will occur when the greatest maximum penetration depth zp occurs (ie when the cloud number
Ncs is small).

Conclusions

The maximum penetration depth and equilibrium depth of fluid captured by a particle cloud in a
stratified fluid is a function of (BIpN2 )1/4 and the cloud number Ncs. These depths decrease as
(B/pN2 )1/4 decreases and as Ncs increases. The maximum penetration depth wiU always be
less than 2.3(B/pN 2)l1 4 . Initial results seem to indicate a maximum final depth for fluid
captured by particle clouds of 1.7(B/pN2)114.

Stratification may possibly affect the maximum penetration and final depths of a particle cloud

by increasing drag on the particle cloud above that occurring in an unstratified fluid.
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Internal waves, vortices and turbulence in a wake
past a bluff body in a continuously stratified liquid.
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The study of spatial structure of the uniform stratified flow past an
obstacle is a traditional problem of fluid dynamics. Lee or associated
(attached) internal waves and attached rear vortices determine a struc-
ture of "clouds bands" and position of the "windows of transparency"
in the down- stream wakes behind mountains. Large internal waves are
observed in the ocean with topography. Experimental data collected
in an environment, mutual analytical and numerical calculations stim-
ulated a development of a modelling of stratified flows in a compact
laboratory tank. Besides wakes past different elements of topography
- isolated hills and mountain systems-current in vicinity of perfect 2D
and 3D bodies - a cylinder [1], a sphere [2] is studied also. This data
is !'sed for testing an analytical and numerical model of internal waves,
laminar and vortex wakes.

The traditional model of stratified flow past obstacle includes up-
stream disturbances (blocked fluid), viscous boundary layer, internal
waves ahead and past the body and wake with attached or shedding
vortices [3]. Modern optic techniques with high spatial and temporal
resolutions resolve additional stable elements of continuously stratified
flow i.e. thin density boundary layer and density wake enclosed by the
high gradient envelope [4]. The layers of density discontinuity separate
the wake, isolated vortices and the internal wave field. The interaction
between different elements of flow can be weak or strong in various
ranges of parameters.

In this paper main results of studying 2D and 3D wakes in a. linearly
stratified liquid are given.

Dimensional and dimensionless parameters. Conventional system of fluid
mechanics equations, describing the flow of a deep viscous isothermal
con-inUously stratifed liquid, includes the state equation Ior uensity
p = po(1 + PS(z)) (R - is a salt contraction coefficient, S = S(z) -- salin-
ity; axis z is vertical) and equations of momentum, mass and salinity
conservation. These equations and appropriate boundary conditions
(non-slipping for velocity and non-permeability for salinity on the sur-
face of the body as well as attenuation of all perturbations at infini-
ty) contain such dimensional parameters as density po and its gradient
dpo/dz (which can be described by reference density and buoyancy scale
A =.(djlnpI/dz)-', period and frequency Tb = 2-r/N = 27rv/A'•), velocity
u, size of an obstacle d, pressure P, gravity acceleration g, kinematic
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viscosity v, salt diffusion coefficient k.. Conditions of geometric, kine-
matic and dynamic similarity lead to conservation of the dimensionless
parameters such as Reynolds, F-oude, Euler, Pecle numbers and den-
sity ratio C = p/Ap(d) = A/d. These parameters can be written in other
forms if the basic scales will be chosen as the main characteristics of
the geometry of the problem and structural elements of the flow.

The buoyancy scale A and obstacle size d are external (geometric)
parameters of the problem. Intrinsic or dynamic scales depend on the
body velocity. They characterize the length of attached internal waves
Ai = 27rA = 2,rU/N, velocity 8, = v/u and density 6, = k,/u boundary lay-
ers thicknesses. Due to the difference of kinetic coefficients ("discern-
tion" of medium), effects of viscosity and diffusion can not compensate
each other even in the boundary current induced by diffusion in rest-
ing stratified liquids on a sloping plane [5J or in a inclined chazinel with
slowly moving walls [6]. Conventional dimensionless parameters can be
written as the ratio of basic scales: Reynolds number Re = Ud/i = d16.;
Froude number Fr = U/Nd = A/d; Pecle number Pe = Ud/k, = d6S,. Den-
sity ratio (ratio of geometrical scales) C = A/d prescribes the value of a
density gradient in laboratory tank for a given coefficient of reduction.

The countable number of secondary scales describes the sizes and
variability scales of secondary flow elements (shear layers, vortices,
sharp interfaces and so on) [7]. Among them can be stressed vis-
cous wave scale L, -= /AM = ,(g-/N which characterizes the modal
structure of periodical internal wave beam [8] and limited vortex scale
L,= = -=ý.2X\A [9]. The ratio of thicknesses of velocity b, = v•
and density 6, = % boundary layers induced by diffusion does not
depend upon time 6,/, = \/1]-k•, = V [5].

For weak stratification the values of basic scales are essentially dif-
ferent A > d > 6, > 6,; d >< A and form a set of imbedded gauges. The
complete set of scales describe distinguished elements - Eigen form of
flows. Boundaries on a flow regimes map which divide the regions with
different structural elements, characterized by conditions of similarity
(or equality) of scales of appropriate origin (condition of scales syn-
chronism). In this case it follows from. the definition of scales that the
boundary on the flow regimes map plotted in the double logarithmic
scales are straight line segments.

From scaling analysis follows that the experimental technique sho-
uld provide for visualization and independent measurement of different
fields simultaneously with high spatial and temporal resolution (the
thickness of a density boundary layer in a salt brine is order b, = k,/U =
0(10-' cm).

Techniques. The experiments have been carried out in several trans-
parent tanks (0.7x0.25x0.7m 3 ; 1.5x0.4x0.4m 3 ; 2.4x0.6x0.6m5 ; 9x0.6x0.6M3;
7 x 1.2 x 1.2m 3 ) filled from below by linearly stratified salt brine. Pro-
files of buoyancy and horizontal velocity were measured with density
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marker (i.e. the trace past vertically arising gas bubble). Different
modification of the schlieren technique viz the vertical slit - the Fou-
cault knife, the slit-thread in focus, the horizontal slit - the regular
grating producing a colour shadow picture (rainbow method), markers,
tracers, dye and electrolytic precipitation (anodic oxidation of tin, of
lead or of their alloys under the action of a direct current) were used.
Static and dynamic properties of contact sensors are checked during
the experiments by methods of vertical oscillations or abrupt displace-
ment [10]. Dynamics parameters of probes is varied due to their strong
interaction with the stratified environment.

mai, rea'lti. The schlieren image of the flow past horizontally mov-
ing sphere and density markers visualized the profiles of velocity ahead
and past the body, internal waves and non-uniforin wake (see Fig.
1). The sharp frontier of the density wake separate internal waves
and vortex flow past the body. The onset of instability can be seen
in the area of a maximum vertical expansion of the wake (Tb = 4.1S,
A = 4.2m, d = 2.0cm, C = A/d = 210, U = 1.12cm/s, Fr = U/Nd = 0.37,
Re= Ud/v 224).

Fig. 1

A special probe and optical techniques were used to measure both
the thickness of the thin envelop and the value of sharpened density
gradient on it. Past the sphere its thickness was less then 0.8 mrm,
the original density gradient is two times reinforced. In a laminar
wake behind a cylinder the thickness of envelope is 0.06 - 0.5 mm,
the density gradient is 15 - 160 times reinforced. The small scale
instability which rolled up or distorted the interfaces is observed.

The field of internal waves consists of zero frequency and transient
internal waves ahead of a body and regular stationary attached waves
past them. The amplitude and phase parameters of apparent waves
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can be described by the source-sink models. The number and position
of point singularities depend upon the body sizes, stratification and
velocity of towing. The vertical displacement in case of motion of a
source sink systems is

R 2 ,r,-2 +R 2  1-sin2 cCOS 2 6 0

77 = sin sin (-sin ocos) x( r* a (1n \
X Cos +0-si~ X > x 0>

r(*)

where a is a distance between singularities, r*, 0, W(x*, y, z) is the spherical
(Cartesian) coordinates, coupled to the body, R is transverse size.

The shape of crest and trough for point source in the three -
dimensional case is given by the equation X2+ y+Z 2 =r2 = 1+Y2/z 2 ; X, =
xojN/U, which transforms into semicircle in the centre-plane X2 + z2  1.
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Fig. 2

Calculations of attached internal waves correspond with measure-
ments everywhere except the vicinity of the frontier of the density wakes
where the shape of the constant phase surfaces is distorted by a shear
flow. The waves do not penetrate inside the density wake. The inter-
action between internal waves and density wake is strong. The length
of domains of compressing and spreading of the wake in the vertical
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direction corresponds to the local internal waves length. The crests
and troughs of internal waves go explicitly through extreme points of
the wake vertical size. The local wave length is

UT& sin 0 UTb (2)

./~n~ OSý- V1±+X*2Y I/(y2 + Z2) 2

The dependence of a maximum vertical displacements in an internal
waves fields in the point h = 12 above the axis of motion is given in
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Fig. 2. For small velocities (1 = l/d, F = UN/d << 1) amplitude of
wave oscillations is increased with Froude number (37/d - v7) it is
decreased in the intermediate range (1 < F < 6), q/d - 1/F) and begins
to rise again when the wake becomes the main source of internal waves
(;/d , F- ). The shape of constant phase surfaces in the transverse plane
is described by the solution for transient waves [11]. The appropriate
schlieren image of -he turbulent flow past body is shown in Fig. 3
(A = 2.8 m, Tb = 3.4 s, t = 2.8 s).

Pattern of turbulent flow in the longitudinal center plane is shown
in Fig. 4. In this case the vertical slit cuts out a narrow band from the
schlieren image of flow which was registrated by the film, moving with
constant velocity. The velocity of the body was u = 0.8 m/s, Tb = 4.2
s, speed of the film was 0.015 m/s, contraction in the longitudinal
direction is 53 times. The first group of the short internal waves is
produced by the body, the second and the following ones are generated
by the turbulent wake. Superfine structure on the periphery of the
turbulent wake is caused by elongated interfaces with amplified value
of the density gradient.

The sharpening of the initial gradient which takes place in a larnn-
nar, vortex (transient) and turbulent regimes of flow effect on the flow
structure and its stability. For example in the wide range of parame-
ters, but when the internal Froude number is less then 0.3, the density
wake past a horizontally moving sphere in a linearly stratified fluid has
a prismatic form. Four distinct enough ribs are formed by the inter-
sections of two horizontal and two vertical high gradient sheets. At
the smallest values of the Reynolds and a-oude numbers, the density
wake is compressed in lateral direction and stretched along the vertical.
With increasing of velocity of the body the wake is compressed along
vertical direction and stretched in horizontal one. Gradually the trans
verse sites of the wake are equalized and its cross section transforms
into the square. With further increasing of velocity the wake became
narrow in vertical and wide in horizontal directions. The distinguished
ribs and sharp corners are maintained during its evolutions. In sub-
sequent regimes the vertical wake size begins to increase due to the
vorticity accumulation in the rear part of the body and the corners
become more smoothed [9].

In the wakes behind 2D and 3D bodies one observes compact iso-
lated vortex elements of a different form (segments of vertical vortex
tubes, vortex billows, 3D circular rear vortices with a sharp boundary,
regular vortex axis-symmetrical blobs in the wake (m, = d/L, > 1), reg-
ular vortices in the turning points of the wake meander (tn1 , = d/L1 , <1),
puffs as well as elongated elements (threads, loops, horse-shoes) and
their combinations. The boundaries between the different regimes in
the double logarithmic scales are straight line sections (Re" - Fr- 3 ,
L*2 

-~ , L* = U3 /Nv; ' = dA and Re2 - Fr", A ~ or A•
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The topological structure of the density wake depends on the an-
gle of the sphere trajectory with the horizon. As the slope increases
the upper part of the density wake envelope defects greater than the
lower one, they approach one another and eventually merges forming
a opened through downstream density "valley". In the wide part of
the "valley" a pair of inclined vortex columns can be formed. Simulta-
neously, the internal waves are restructured. All passive contaminants
coming from the sphere surface are collected on the interfaces and on
ribs of their intersections.

A more complicated structure has a flow behind 2D body, where
together with embedded into the density wake eddies soaring or sus-
pended isolated vortices and vortex systems are observed. Wakes of
vortices also create discontinuities in the field of density gradient. In
all regimes the density wake is contoured with or contain inside high
gradient sheets. An initial continuous density profile undergoes strong
distortion and high gradient interfaces are formed near and far from
the body [12]. Two types of instability - small- and large-scale ones
- and two types of turbulence both structural and active were ob-
served. In the first case the density and its gradient are characterized
by random functions but the profiles of velocity are smoothed. In the
case of active turbulence all parameters can be described by random
functions. All in all, fourteen types of flow past a horizontal cylinder
are identified which are separated by straight line sections on the flow
regimes map [7].

The experimental data show that the stable geometric properties
of the wakes can be described by intrinsic length scales. Due to the
difference of kinetic coefficients the scales of variability for different pa-
rameters do not coincide. The conditions of the similarity for scales of
different origins describe the boundary in the flow regimes maps. High
gradient interfaces increase the influence even for weak stratification,
stabilize the vortex motion, enlarge the number of vortex forms and
lead to strong interaction of different flow elements, including waves,
density wake and vortices.
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Abstract

Experiments on late wakes (Nt > 20) of towed spheres in a stably stratified
fluid reveal some startling similarities and differences when compared with the
homogeneous 3D case. Wake-averaged fluctuating components scale remarkably
similarly, but the mean centreline velocity is one order of magnitude higher. The
reasons for this may lie in the increased coherence and organisation of the patches
of vertical vorticity, which are stable and persist for very long times.

I Introduction

Wakes of axisymmetric bodies in a stable stratification exhibit certain interesting prop-
erties that distinguish them from their non-stratified counterparts. Among the most well
known of these is the propensity for the long time wake to evolve to a state that is char-
acterised by the presence of stable patches of vertical vorticity having large horizontal
length scales compared with any vertical structure, and for this apparently stable wake
structure to persist for very long times. The field was reviewed by Lin & Pao [1], and has
been the subject of recent investigations by Lin et al. [2], and by Chomaz and colleagues
(e.g. [3] and references therein). However, with the latter exception, there have been
few quantitative measurements of the wake velocity field, particularly at late times. All
of the wake structure measurements for axisymmetric bodies in [1] axe for self-propelled
bodies and, owing to the difficulty of making the measurements, the results in [3] (for
towed spheres) were for selected cases only.

In the absence of any influence from exterior boundary conditions, the flow is de-
termined by the values of two dimensionless parameters, the Reynolds number, Re =
2UR/z, (U is the sphere speed, R its radius, and v is the kinematic viscosity), and the
internal Froude number, F = U/NR, where N = (-g/po (Op/l&))4 is the Brunt-Viiisili
frequency. It is essential, not only to vary these parameters independently, but also that
high [Re, F] are considered, bearing in mind the practical applications.

This paper dicusses the evolution of the vortex wake in a single series of experiments
at constant Re ; 5 x 10' over a range of Froude number, F = [1.2.2,4,7.9]. The data
are a subset of independent variations of Re and F over Re E [13, 10i]; F E [1,10].

1i



2 Quantitative Experiments

2.1 Apparatus

Spheres with diameters (D) of 1.9, 2.54 and 3.8 cm were mounted on three thin (d =

.025cm) wires, under tension in an inclined plane and suspended between three thicker
support cables lying just below the surface and just above the bottom, respectively
(Figure 1). The effects of the top and bottom slider assemblies are confined mostly to
the boundaries, and Red ; 50 so the support wires have little effect on the sphere wake
itself. The spheres were towed through a 2.4m 2 plexiglass box with a 1.35m extension to
ailow for transient and startup effects. Since the water depth, H, is 24cm, confinement
effects can be observed, but do not appear to affect the particular results reported here.

2.2 Procedure

The tank was filled with the standard two-tank method to create a linear density gra-
dient. Once full, the tank was seeded with a high spatial density of neutrally-buoyant
polystyrene beads, about 1mm in diameter, and sorted by density so that the bead den-
sity variation is less than .05% (P0 = 1.0475 ± .0005). The beads thus mark an isopycnal
located at the midplane of the body, to within one bead diameter.

In each experiment, the bead distribution in {x, y) was first homogenised by towing
a vertical rake through the tank. After 40 minutes, allowing most of the residual motions
to have decayed, the sphere was towed the length of the tank, beginning at the far end
of the extension section. For each tow, a sequence of image pairs was recorded on an
overhead CCD camera. The effective 'exposure' time, 6t, and interval between successive
frame pairs, At, were both optimised for the best resolution of the velocity field based
on initial experiments. Images were transferred directly into PC RAM, and the entire
sequence of events, including the mixing, towing, data transfer and sphere repositioning,
was automated, operating under computer control.

Data were taken from early times corresponding to Nt = 20, and continued until
the wake could no longer be distinguished from the background; this typically occured
around Nt > 3000. Ni could also be related to downstream distance through the
correspondence x = Ut.

2.3 DPIV

At ea&i time step, two digitised particle images were interrogated and the mean displace-
ment of information in a given subrectangle was estimated from the location of the cross
correlation peak. A custom DPIV technique [4]) was used to give velocities with approx-
imately an order of magnitude improvement in accuracy over standard DPIV methods.
The two aspects most responsible for this are the decoupling of the interrogation search
radius from the correlation box size, and an iterated interpolation/fitting method for
accurate fitting of the cross-correlation peak. The velocity vectors were reinterpolated
onto the regular interrogation grid to correct for systematic errors from the finite dis-
placement of the particles during the effective exposure time, 6t. This was accomplished
with a two-dimensional smoothing spline algorithm [5], that also gives analytical ex-
pressions for reconstruction of the spatial velocity gradients. The usual errors stemming
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from finite differencing techniques were thus avoided, and the error in quantities derived
from these gradients is much lower than usual, being at most 10% of the mean value.

2.4 Wake energy, enstrophy and dissipation

A wake width, Lw, can be defined by computing an X-averaged (U(y))x profile, over the
streamwise length of the measuring area, AX = 1.9m (Figure 2), and Lw can be taken
as the crosstrearn distance where (U(y))x > 0.2(U0). and (Uo) is the mean centreline
velocity. Lw thus defines inner and outer wake regions at each tirnestep. Spatially-
averaged quantities within this region will be denoted by ( )-brackets. So, defining

= (u2 + v2)! the local (inner wake) kinetic energy is,

E 1 l(q2). (i)

Similarly, given the vertical vorticity, 
(1)_ v '9u

FX T,' (2)

then the local mean enstrophy is

12 (3)12

The single measurable component of the rate of strain tensor is

1 ( Ou, Ou' \sij = "I \axj +Ox] ,i j 1 ,2, (4)

and, denoting e as the kinetic energy dissipation rate due to horizontal gradients in
horizontal velocity, then the mean v-lue, S, in th-. inner wake region is

S = ()= 2P(3,T3-j). (5)

Taking X-averaged statistics at fixed times is equivalent to averaging over a certain
downstream portion of the wake in body coordinates. Ideally, the averaging domain,
AX, should be a small fraction of the total wake length, X. At long times, and for large
F•, this is so. The general expression fOr A•X/X is

AX AXIRx~

3 Results

Figure 3 shows a single example time series of w, for F = 4, Re = 5286. The
wake vortices axe coherent and persistent, though not isolated, and like-signed neighbours
can be seen merging. At this F, lee waves in the exterior wake and out-of-plane motions
in the interior wake have approximately the same amplitude.

3
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Some simple scaling arguments demonstrate why this particular value of F is inter-
esting. In order for the initial wake turbulence to be active over all scales, as would be
the case in a non-stratified fluid, both Re and F must exceed some lower limit. One can
think of the requirement on F being related to the baroclinic torque exerted by the grav-
itational field on the vertical overturning motions. The largest vertical size attainable
by a turbulent eddy is of the order of the Ozmnidov scale,

(T'13 (U 3

where c is the dissipation, u' the fluctuating velocity, and I is a turbulent integral scale.
For the turbulence to be initially unaffected by stratification, to Ž 1, so

W = (U')

Experimental results [6, 7] for turbulent wakes of spheres indicate that initial turbulence
intensities axe around 0.3, and 11D is about 0.4. This gives the criterion,

4FŽ") 23, (8)kNR]

for active turbulence on all scales. Not only is this result consistent with these wake
measurements, but it also accords with observations in [8, 3].

3.1 Turbulence quantities scale as 3D wakes

Similar extrapolation of unstratified, 3D wake results leads one to predict that the
turbulent velocity fluctuations and the integral lengthscales evolve as ([7, 9, 10])

--U X )-I ' I •• ---D •

If the horizontal wake width, Lw, scales initially as the 3D result, then setting ut' =

q, x/D = UtID, F = U/N 7, predictions can be made for the scaling behaviour of the
horizontal wake width, a_.; for the turbulent kinetic ener&v as

and
q 2U (F) 3, (Nt)-3, (10)

In fully-developed, homogeneous turbulence, only local scales of velocity and length are
important and since w, " u/L,

( I F (Nt)-1 . (11)

4.D
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Finally, c - u'3/L, so
(0> (F) (Nt)- (12)

U3/D

These dependencies on Nt and F are simply the 3D, unstratified wake scalings couched
in stratified wake parameters. One might expect the flow to behave according to these
scalings at early times, and then depart from them as stratification effects predominate.
This does not appear to be the case, however. Figure 4 shows the normalised wake
width as a function of Nt and F, for Re c 5 x 101. Figures 5-7 show the decay of q, W
and S (3,5) in the same data, together with straight lines given by the exponents in (9-
12). Despite the fact that the scaling arguments were derived from SD wake flows, they
predict the data well in all cases, independent of F. Not only this, but the relationships
apparently are followed even into very late times (Nt > 500), long after the initial
'collapse' at Nt ý_ 2, and long after the dynamics have become quasi-2D (Nt > 20).

3.2 Mean flow-ield does not scale as isotropic wake

Figure 8 shows the Lw-normalised mean centreline profiles for the data in Fig. 3. The
collapse of the data is good, except on the wings of the distribution where U0 < 0. At
each Nt the mean (U(y))x can be fit with a Gaussian of the form

(U(Y))x = Uo- `/'&/2

where A1 = L,, is a characteristic width of the Gaussian function, when G(y) =
exp(-1/2). (Since this is the half width, and exp(-1/2) > 0.2, then L, < Lw, typically
"n Lw/4). Given this similar functional form, one may now search for scaling laws that
predict L. and U0 as:

Bno , (13)

(-) CO T)c. (14)

Figure 9 shows the L,-normalised wake width as a function of .1D and for the usual
values of F. The solid curve is the data of [9]. The spread in the data for different
F is approximately the same as in Firure 4, but it is clear that the stratified wakes
are narrower than their unstratified ,mnnterpart; the highest F result lies closest to the
isotropic case. Ignoring this F-dependence, a least-squares fit to all the data (see Table
1 for details) gives:

Bo - 0.20, B1 = 0.36.
B, is not significantly different from the value of 1/3 obtained from unstratified wake
similarity scaling. The rncan centreline velocities are compared with available unstrati-
fied results [6, 7, 9] in Figure 10. Although they appear to decay at the same approximate
rate as the unstratified wakes, the centreline velocities are almost an order of magnitude
higher for a given z/D. However, a very approximate single estimate of Uo/U can bc
extracted from a velocity vector plot in [3] (Re = 3920, F = 3, z/R = 1.6), and the
data point falls exactly in the range reported here. There is no consistent F-dependence
evident over this range of F. The overall least squares fit gives:

Co = 4.23, C, -0.88.
-I
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I B0 B,]-1 ý ýC,1
1.2 0.13 0.40 3.16 -0.87

2.0 0.15 0.38 5.13 -0.95
4.0 0.33 0.27 4.58 -0.85
7.9 0.17 0.40 4.05 -0.86

Iav 00 4.231 -0.88
d 10.09 0.06 J 0.841 0.05

Table 1: Constants specifying stratified wake decay rates.

The exponent C, is much larger than the nominal -2/3 value, but close to the value of
-0.85 reported in [6].

4 Summary

Bluff body wakes in a stable stratification are characterised by a very organised and
persistent arrangement of patches of vertical vorticity (Figure 3), so that, while the
fluctuating velocity components and their statistics show good (and surprising!) agree-
ment with the 3D, homogeneous wake, the mean centreline wake velocity is an order
of magnitude stronger. The increased order in the wake is also consistent with the re-
duced spreading rate (Figure 9) and with the opposite-signed mean flow on the wake
margin (Figure 8). It remains to construct a reasonable model for the evolution and
final arrangement of vortex lines that comprise such a wake and correctly predict its
dynamics.
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